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Data Analysis in APP

Tim Ruhe, HAP Workshop Aachen 2019
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Physics Results

Open Data

Tools, 
Algorithms, ...

APP and Computer Science

Tim Ruhe, HAP Workshop Aachen 2019
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Event Reconstruction with Machine Learning

Tim Ruhe, HAP Workshop Aachen 2019
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Fig. 5 Angular Resolution as the 68 % containment distance between
reconstructed and true source position for simulated gamma ray events
with correctly classified sgn(disp).
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Fig. 6 Energy migration between estimated and true energy for simu-
lated gamma rays after event selection.

region selection. While the effect is negligible at higher en-
ergies, where the classification and regression perform best,
the lower energies are affected more strongly.

5.3 Energy Bias and Resolution

The migration between true and estimated energy for simu-
lated gamma-ray events after applying the source region and
gamma/hadron selection cuts is shown in Figure 6.

The the relative error of the estimated energy is calcu-
lated for each event:

Drel =
Eest �Etrue

Etrue
(2)

Per bin in true energy, the median and the interquantile
distance of the central 68 %-quantile of Drel are calculated,
which are called bias and resolution respectively. The results
are shown in Figure 7.

103 104

Etrue / GeV

�0.25

0.00

0.25

0.50

0.75

1.00

�0.25

0.00

0.25

0.50

0.75

1.00

Fig. 7 Bias and resolution of the energy estimation as median and half
width of the central 68 %-interval of the relative error Drel for simulated
gamma rays after event selection.
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Fig. 8 Distribution of the squared distance between reconstructed and
assumend source position, for the Crab Nebula (on) and the five back-
ground regions (off). A clear excess corresponding to a significance of
58.9 s is visible.

5.4 Detection of the Crab Nebula

Applying the analysis methods described before to the 91 h
of Crab Nebula observations using the wobble observation
mode [5] and using five off sources in the analysis for the
background estimation results in a detection of the Crab
Nebula with a significance of 58.9 s according to the Li&Ma
likelihood ratio test[15], which corresponds to 6s/

p
h. The

integral sensitivity is calculated as the smallest flux as per-
centage of Crab Nebula flux, that would still yield a detec-
tion with a significance of 5sigma in an observation time of
50 h.

The on region contains both signal and background events,
while the off region only contains background. The size ra-
tio of off and on region is a . The relative sensitivity srel, is
the percentage of signal events, that still yields 5 sigma in
50 h of observation time. Both the signal and background
events have to be scaled to the reference observation time of

Energy and Particle Type

! Energy: 
! Random Forest Regressor (200 trees, max. 

depth 15)
! Cross validdated r2-score:  0.785 +/- 0.017

! Particle type: 
! Random Forest Classifier (200 trees, max. 

depth 15)
! AUC: 0.827 +/- 0.003

Tim Ruhe, HAP Workshop Aachen 2019

M. Nöthe, Kai Brügge
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Directional Reconstruction: Disp Method

Tim Ruhe, HAP Workshop Aachen 2019

! Simplifies 2D regression to 1D 
regression plus binary
classification

! True source position is somewhere
on main shower axis

! Use Random Forest Regressor to
estimate distance to cog of light 
distribution (2 solutions)

! Use Random Forest Classifier to
pick correct solution

X X

X X

RF Regression

RF Classification

M. Nöthe, Kai Brügge
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Directional Reconstruction: Disp Method

Tim Ruhe, HAP Workshop Aachen 2019
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reconstructed and true source position for simulated gamma ray events
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lated gamma rays after event selection.

region selection. While the effect is negligible at higher en-
ergies, where the classification and regression perform best,
the lower energies are affected more strongly.

5.3 Energy Bias and Resolution

The migration between true and estimated energy for simu-
lated gamma-ray events after applying the source region and
gamma/hadron selection cuts is shown in Figure 6.

The the relative error of the estimated energy is calcu-
lated for each event:

Drel =
Eest �Etrue

Etrue
(2)

Per bin in true energy, the median and the interquantile
distance of the central 68 %-quantile of Drel are calculated,
which are called bias and resolution respectively. The results
are shown in Figure 7.
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Fig. 7 Bias and resolution of the energy estimation as median and half
width of the central 68 %-interval of the relative error Drel for simulated
gamma rays after event selection.
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ground regions (off). A clear excess corresponding to a significance of
58.9 s is visible.

5.4 Detection of the Crab Nebula

Applying the analysis methods described before to the 91 h
of Crab Nebula observations using the wobble observation
mode [5] and using five off sources in the analysis for the
background estimation results in a detection of the Crab
Nebula with a significance of 58.9 s according to the Li&Ma
likelihood ratio test[15], which corresponds to 6s/

p
h. The

integral sensitivity is calculated as the smallest flux as per-
centage of Crab Nebula flux, that would still yield a detec-
tion with a significance of 5sigma in an observation time of
50 h.

The on region contains both signal and background events,
while the off region only contains background. The size ra-
tio of off and on region is a . The relative sensitivity srel, is
the percentage of signal events, that still yields 5 sigma in
50 h of observation time. Both the signal and background
events have to be scaled to the reference observation time of

M. Nöthe, Kai Brügge
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First Results for CTA

Tim Ruhe, HAP Workshop Aachen 2019

Preliminary!

Preliminary!

Kai Brügge
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Classification: Approach and Challenges

Tim Ruhe, HAP Workshop Aachen 2019

Variable Selection Classifier Training
Cut on Classifier

Output

Picture: CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.p
hp?curid=14260
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Classification: Approach and Challenges

Tim Ruhe, HAP Workshop Aachen 2019

Variable Selection Classifier Training
Cut on Classifier

Output

Picture: CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.p
hp?curid=14260

~1200 Features
Signal to Background Ratio: 10-3

Trade-off between signal
efficiency and background

rejection.
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Feature Selection: MRMR

Tim Ruhe, HAP Workshop Aachen 2019

Event Selection – Feature Selection

1219
Initially

855
constant%&%useless

323
Correlation%cut

311
Data/MC%Clf

60
mRMR

1129
blacklisted

AUC

AUC

AUC

Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

M. Börner, PhD thesis (2018)

! Select features according to relevance and
redundancy

! Feature set is built by iteratively adding
features that fulfill the following criterion

max
$% & '()*+,

- ./, 1 − 1
4 − 1 5

$6 & )*+,

-(.8, ./)

Ding, C., & Peng, H., Journal of bioinformatics and computational biology, 3(02), 185-205. (2005)

Peng, H.C., Long, F., and Ding, C., IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol. 27, No. 8, pp. 1226–1238, 2005.
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Excluding Data-MC Mismatches

Tim Ruhe, HAP Workshop Aachen 2019

Event Selection – Feature Selection

1219
Initially

855
constant%&%useless

323
Correlation%cut

311
Data/MC%Clf

60
mRMR

1129
blacklisted

AUC

AUC

AUC

Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

! Train classifier to distinguish data
and Monte Carlo

! Inspect feature importance
! Dismiss important feature

! Useful for feature selection and
verification

M. Börner, PhD thesis (2018)
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Excluding Data-MC Mismatches

Tim Ruhe, HAP Workshop Aachen 2019

Event Selection – Feature Selection

1219
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855
constant%&%useless
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311
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1129
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AUC

AUC

AUC

Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

Conclusion & Outlook

AUC

AUC

AUC

Valuable tool to identify and 
minimize data/MC 
disagreement

Feature selection provides 
major improvement of the 
achievable event rate

Selection can be easily adjusted 
to provide even higher event 
rate, when a lower purity is 
acceptable

Will be extended as soon as possible to pass2 (IC86%I +) (Corsika simulations 
missing)
! At least 700 000 neutrino events in the new sample (7 years)

Interested? Contact: mathis.boerner@icecube.wisc.edu or tobias.hoinka@icecube.wisc.edu

15

M. Börner, PhD thesis (2018)
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Classifier Training and Output

Tim Ruhe, HAP Workshop Aachen 2019
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Fig. 3 Same as Fig. 2, zoom into the region where the final selection
cut is considered.

The systematic uncertainty of the event selection was es-
timated by applying the forest to simulated events produced
with different DOM efficiencies and a different modeling of
the ice. For this purpose the efficiencies of all DOMs were
either increased or decreased by 10% from their nominal
values. The modeling of the ice was taken into account by
using the SPICE Mie ice model [21] instead of its predeces-
sor SPICE-1. It was found that the uncertainty of the event
selection due to the ice model is on the order of 5%, whereas
the uncertainty due to the DOM efficiency was estimated to
be 18%. Combining both values one finds that the total sys-
tematic uncertainty of the event selection is 19%.

After verifying the performance of the Random Forest
the final model was trained using 27,000 simulated neutrino
events and 27,000 simulated background events. The events
for each class were drawn at random from the total sample
of available simulated events.

The application of the entire event selection chain on the
full set of IceCube-59 data yielded 27,771 neutrino candi-
dates in 346 days of detector live-time (≈ 80 neutrino candi-
dates per day). The number of remaining atmosphericmuons
was estimated to be 114± 103. The purity of the final neu-
trino event sample was estimated to be (99.59+0.36−0.37)%. No
events with a zenith angle θ < 90◦ were observed in the
sample after the application of the Random Forest.

The number of events surviving the two preselection cuts
on the zenith angle and the LineFit velocity is 15.3× 106.
This corresponds to an estimated background rejection of
91.4% at a signal efficiency of 57.1%.

Comparing the total number of neutrino candidates at fi-
nal level an increase of 62% is observed with respect to [2],
which used IceCube in the 40-string configuration. Taking
into account the larger volume of the detector (59 compared
to 40 strings) and the increased trigger rate, the event selec-
tion method presented in this paper succeeds in an increase
of 8% in the number of neutrino candidates compared to the
event selection presented in [2]. The relative contamination
of the sample with atmospheric muons was found to be of
the same size as in [2].

In the event selection, which is the basis for the subse-
quent unfolding of the νµ energy spectrum, a signal effi-
ciency of 18.2% was achieved at a background rejection of
99.9999%, which corresponds to a reduction of the contam-
ination of the event sample with atmospheric muons by six
orders of magnitude. Both signal efficiency and background
rejection were computed for events with θZenith ≥ 88◦, with
respect to the starting level of the analysis and for neutrino
energies between Eν = 100 GeV and Eν = 1 PeV.

All event selection steps regardingmachine learning, pre-
processing, and validationwere carried out using the RAPID-
MINER [22] machine learning environment.

5 Spectrum Unfolding

As the neutrino energy spectrum cannot be accessed directly,
it needs to be inferred from the reconstructed energy of the
muons. This task is generally referred to as an inverse, or
ill-posed, problem and described by the Fredholm integral
equation of first kind [3]:

g(y) =
∫ a

b
A(y,E) f (E)dE. (7)

For the discrete case this transforms to:

g(y) = A(y,E)f(E), (8)

where f(E) is the sought energy distribution and the mea-
sured energy dependent distribution is given as g(y). The
matrix A(y,E) represents the response matrix of the detec-
tor, which accounts for the physics of neutrino interactions
in or near the detector as well as for the propagation of the
muon.

Several approaches to the solution of inverse problems
exist. The unfolding program TRUEE [3], which is an exten-
sion of the RU N [23] algorithm, was used for unfolding
in this analysis. The stability of the unfolding as well as the
results obtained on experimental data are addressed in the
following.

Aartsen et al., EPJC 75, 116 (2015)

~ 200 neutrino candidates per day
~ 80 neutrino candidates per day

7

(redundancy). The variable with the largest di↵erence
D = K � L is added to the set. The relevance of a
variable with respect to the class variable is determined
by an F-test, whereas the redundancy between two vari-
ables is computed as the absolute value of the Pearson
correlation coe�cient [28]. This way a set of m variables
is built up. A more detailed description of the approach
can be found in [3] and [27].

In this analysis, m = 25 showed a reasonable trade-
o↵ between computational feasibility and retaining in-
formation in the dataset. The selected variables can
be ordered into three di↵erent groups: variables to ap-
proximate the energy, variables containing geometric
properties of the event and variables indicating the
reconstruction quality. Since the performance of the
Random Forest depends on the agreement between data
and simulation, the 25 variables selected by MRMR
were manually inspected for disagreement between data
and Monte Carlo. No such disagreement was found and
the 25 variables were used to train the Random Forest
accordingly.

A Random Forest is an ensemble of decision trees. It
is trained with simulated events to build a model that
can be applied to unclassified events. In the application
the j-th tree assigns a label xi,j = {0, 1} to to the i-
th event. Thus, the final classification is achieved by
averaging the output of all decision trees in the forest:

c

Signal,i =
1

N

trees

N
treesX

j

xi,j . (2)

In machine learning, c
Signal,i is generally referred to as

confidence. To achieve unique trees in the RF, each
decision tree is trained on a subset of simulated events.
At each node only k randomly chosen variables are
used to find the best cut. Before applying the RF to
experimental data, the RF is applied to simulated events
to evaluate the performance of the classification.

After the application of the forest, the vast majority
of the simulated background muons (more than 99.9%)
is found to be scored with a confidence c

Signal,i < 0.8.
Only 26 simulated atmospheric muons were found to
populate the high confidence region (c

Signal

> 0.8). Since
the analysis relies on a high purity sample of neutrino
candidates, the number of remaining background events
needs to be estimated as accurately as possible. The
confidence distribution is the basis for this estimation
and thus has to be obtained as accurately as possible,
as well. Due to the few background events found for
c

Signal,i � 0.8 the accuracy of the confidence distribu-
tion is statistically limited for this very region. This
limitation can be overcome by utilizing a bootstrapping
technique [29].

Fig. 2: Confidence distribution for data and simulation.
Low confidence values indicate background-like events
and high confidence values indicate signal-like events.
A cut in the confidence � 0.92 yields a sample with a
purity of (99.5 ± 0.3)%.

In the bootstrapping, a total of 200 Random Forest
models were trained, each built on a randomly chosen
sample with 50% of the size of the full sample. Using
this technique, each event is scored on average 100 times.
By normalizing the resulting confidence distribution for
each event, the approximation of the confidence distri-
bution is improved by taking the variance of c

Signal,i into
account. Furthermore, it provides statistical uncertain-
ties for the classification. Using this way to control sta-
bility and performance, the parameters of the Random
Forest were set to k = 5 and 200 trees. The forest was
trained using 120,000 simulated signal events and 30,000
simulated background events. The resulting confidence
distributions for simulated events and experimental data
show good compatibility and confirm a stable separation
(see Fig. 2). No signs of overtraining were observed in
the cross validation.

The cut on c

Signal

is a trade-o↵ between background
rejection and signal e�ciency. Due to the steeply falling
spectrum of atmospheric neutrinos and the expected
contribution of astrophysical neutrinos, the cut was
selected to yield a su�cient number of events in the
highest energy bins. For this analysis, a cut at c

Signal

�
0.92 was chosen (see Fig. 2).

This cut yields a total of 66,885 neutrino candidates
in 319.6 days of detector livetime (2.26 · 10�3 neutrino
candidates per second). The number of background
events surviving to the final level of the analysis was
estimated to 330± 200 ((1.10± 0.73) · 10�5 background
events per second), which corresponds to an estimated
purity of (99.5 ± 0.3)%. In total, 21 neutrino candidates

59 strings79 strings

Aartsen et al., EPJC 77,  692 (2017)
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Event Selection - Classification

Random Forest Classification

9

Classifier Training and Output

Tim Ruhe, HAP Workshop Aachen 2019

Conclusion & Outlook

AUC

AUC

AUC

Valuable tool to identify and 
minimize data/MC 
disagreement

Feature selection provides 
major improvement of the 
achievable event rate

Selection can be easily adjusted 
to provide even higher event 
rate, when a lower purity is 
acceptable

Will be extended as soon as possible to pass2 (IC86%I +) (Corsika simulations 
missing)
! At least 700 000 neutrino events in the new sample (7 years)

Interested? Contact: mathis.boerner@icecube.wisc.edu or tobias.hoinka@icecube.wisc.edu

15

~ 300 neutrino candidates per day

Classifier output is energy and
zenith dependent.

Score cut as a function of energy
and zenith. 

86 strings (I,II,III)

M. Börner, PhD thesis (2018)

Preliminary!
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Why Unfold?

Tim Ruhe, HAP Workshop Aachen 2019

The production of muons
from muon neutrinos is a 
stochastic process:

Neutrino  energy
spectrum Physics of neutrino

interaction
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Why Unfold?

Tim Ruhe, HAP Workshop Aachen 2019

Fredholm integral equation of the
first kind

!"#
!$#
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. / = &
'012

'034

5 $, / 7 $ !$
5($, /) also includes muon propagation

and additional smearing introduced by the
detector itself

.⃗ / = 5($, /)7⃗(9) Generally solved as a matrix equation, matrix
5($, /) obtained from simulation
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The Dortmund Spectrum Estimation Algorithm (DSEA)

Tim Ruhe, HAP Workshop Aachen 2019

We are generally happy 
with a discretized version

of the result.

v1 v2 v3 vI vI+1

Y |1 Y |2 . . . Y |I

Y

f
Interpret every bin as a 
class of event and solve

with classifier

+ +!" =
Interpret classifier output

as pdf, obtain estimator for
by summation over

confidence distributions

...
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Motivation for DSEA

Tim Ruhe, HAP Workshop Aachen 2019

Throughgoing 
track

Corner
Clipper

Stopping
Track

InhomegeneityInhomogeneity

! Muons of the exact same energy, 
may create very different patterns, 
depending on their geometry

! Geometric information might
increase accuracy

! Many existing algorithms are
limited w.r.t. the number of input
variables

! Spectra are returned accurately, 
but information on individual 
events is lost
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DSEA: Iterative Update of Weights

Tim Ruhe, HAP Workshop Aachen 2019
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DSEA 10k input events
DSEA 50k input events

RF Regression 10k input events
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Ruhe et al., Proc. of ADASS XXVI (2016)
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DSEA+: Adaptive Step-Width
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(exponential decay)

12 Mirko Bunse et al.
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Fig. 6 The adaptive step size is nearly optimal, i.e. it is close to the step size which would have been chosen with full knowledge about the true
quantity Y . Left: On toy data, convergence happens within a single iteration and in a remarkable proximity to the true solution. Right: The
original DSEA does not diverge on the FACT data set, but only converges slowly and towards an inaccurate estimate. In contrast, the adaptive
strategy almost attains the optimal step size, converging accurately and quickly with both values of the regularization strength t .

plots the mean quality together with the lower and upper 5%
quartiles in several runs. For reference, the mean quality ob-
tained with an optimal step size is also displayed. This opti-
mal size is chosen with full knowledge about the true density
f, which is never available in practice. It thus produces the
best estimates obtainable through the step size extension.

Note how the original DSEA diverges from the true f
of the toy data set after having found a suitable estimate.
In contrast, the adaptive step size directly attains the opti-
mum in a single iteration. On the FACT data set, this opti-
mum is almost attained. In this sense, the adaptive strategy
is (nearly) optimal. The choice of the regularizing parameter
t does not have an influence on the result, which is desirable
because no extensive meta-parameter optimization is neces-
sary. Remarkably, the adaptive strategy usually takes a first
step with a scaling factor greater than one. Therefore, it does
not only stop at an appropriate estimate, but also approaches
the true density faster than the original DSEA does.

5.3 Impact of the Classifier

DSEA and DSEA+ assume that the conditional probabil-
ities P̂(Y ⌘ i|X = x) can be recovered from a classifier’s
confidence values cM (i |xn). Since this assumption is not
necessarily valid, it seems obvious that the quality of the de-
convolution results strongly depends on the degree to which
this assumption holds in a given setting. Required is thus a
classifier which returns accurate probability estimates.

In particular, we desire that among all samples for which
a classifier returns a confidence value 0  cM (i|·)  1 the
long-run (empirical) probability P̂(Y ⌘ i|·) matches cM (i|·).

P̂(Y ⌘ i | cM (i|·) = c)! c for N ! •

In machine learning, a classifier which fulfills this criterion
is said to be well calibrated [13]. Any other trained classifier

Table 2 Performance of classifiers when deconvolving the FACT data
with DSEA+. Bold entries indicate the best methods.

classifier EMD to f error rate

naive Bayes 0.401±0.064 0.703±0.014

calibrated naive Bayes 0.199±0.026 0.677±0.006

CART tree 0.053±0.013 0.632±0.004

calibrated CART tree 0.056±0.013 0.624±0.004

random forest 0.391±0.012 0.658±0.003

calibrated random forest 0.146±0.030 0.660±0.006

logistic regression 0.109±0.014 0.670±0.004

SVM 2.582±0.013 0.921±0.073

can be turned into a calibrated one through probability cal-
ibration [26], an additional training step which uses a sepa-
rate calibration data set.

Tab. 2 compares some calibrated and un-calibrated clas-
sification methods with respect to the quality of the deconvo-
lution results obtained by plugging them into DSEA+. The
meta-parameters of each method optimize the mis-classifi-
cation rate also given in this table. Logistic regression al-
ready returns calibrated confidence values. The SVM classi-
fier is calibrated with Platt’s scaling [19], whereas all other
calibrations are taken out with an isotonic regression model
[26]. Calibrating a random forest does not require a separate
calibration data set because its out-of-bag predictions on the
training set can be used for calibration [6].

Naive Bayes and random forest produce better decon-
volution results after calibration. This improvement is quite
distinct, even though the misclassification rates of these clas-
sifiers are only slightly improved by calibration. Surpris-
ingly, there is no improvement in deconvolution quality for
the most accurate method, the decision tree. This classifier
also works best on the MAGIC data set (EMD = 0.043±

M. Bunse, Master thesis 2018.
Bunse, Ruhe et al., Proc.&of the 5th&IEEE&Int.&Conf.&on&
Data&Science&and Advanced Analytics&(DSAA) 2018.
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DSEA+: Comparison of Different Algorithms

Tim Ruhe, HAP Workshop Aachen 2019

Deconvolution of Probability Density Functions 13
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Fig. 7 The accuracy of deconvolution methods is assessed on three data sets. Each experiment is conducted with two different densities of the
training data. Left: DSEA+, IBU, RUN, and SVD perform similarly well on the MAGIC data set. Namely, they all are close to the optimal quality
(dashed line), which is only limited by the finite size of the test data set. Center: All methods are slightly less accurate on the FACT data set.
Right: DSEA and DSEA+ produce equally accurate results on the uniform toy data.

0.014). On the toy data, a calibrated naive Bayes is the best
choice (EMD = 0.056± 0.017). In the following, we thus
employ a calibrated CART classifier for FACT and MAGIC
and a calibrated naive Bayes for the toy data set.

5.4 Comparison of Deconvolution Methods

To date, no systematic comparison of deconvolution meth-
ods has been published. We intend to fill this gap by evaluat-
ing the quality of their results on multiple data sets, namely
on FACT, on MAGIC, and on toy data. Each method is op-
timized over a dense grid of meta-parameter combinations
displayed in Tab. 3. The optimization is taken out with a
separate validation data set which is disjoint from the final
test data. Each experiment is run several times so that the
mean quality can be assessed together with the lower and
upper 5% quartiles. We report our results for high and for
small amounts of observed data.

5.4.1 Performance on Large Volumes of Data

50000 examples have been observed in our first comparative
experiment. This set is bootstrapped multiple times, yielding

Table 3 The grid of meta-parameters over which the deconvolution
methods are optimized

method parameter values

all convergence threshold e 10�1,10�2, . . . ,10�9

DSEA+
t (regularization a

(k)
RUN) 10�3,10�4, . . . ,10�9,0

IBU/RUN number J of clusters 21,84,147,210

IBU smoothing order 1,2, . . . ,9, no smoothing

RUN expansion factor e 1 (no expansion), 2, . . . ,6

several test sets with an average size of N = 18394. Thus,
we can assess the mean quality and its upper and lower 5%
quartiles while maintaining large data sets in each run.

Since each test set is disjoint from the deconvolved data,
we need to expect some distance between the deconvolution
result and the true density which stems from the finite size N
of the test set alone. Fig. 8 presents the quality of a density
obtained from N examples, if the true target value is known
for each of these observations. Since the true target value is
never known in deconvolution, we can not expect a deconvo-
lution result to be more accurate than this density. Therefore,
we should always relate the quality of a deconvolution result
to this natural lower bound of the EMD.

Fig. 7 presents the quality of deconvolution results ob-
tained with several methods. The mean lower bound of the
EMD, which stems from the finite test set alone, is indicated
by dashed lines. In general, all methods exhibit the same
high quality, except for the original DSEA. From a visual
inspection of the estimates we can report that making out a
difference at dEMD < 10�1 is almost impossible.
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Fig. 8 The error of a density estimated with full knowledge about the
target quantity. This error is only induced by the finite size N of the
underlying data set. The dashed line at N = 18394 indicates the error
induced by the finite test set in Fig. 7.
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DSEA+: Preliminary Results
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P. Schäfers

M. Bunse



27

DSEA+ Future Plans: Neighbourhood Relations

Tim Ruhe, HAP Workshop Aachen 2019
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! Binning is somewhat arbitrary
! Events located near upper and lower

bin edges might be not just 
somewhat different

! Events near edges may be more like 
events in adjacent bins

! Class label is ordinal
! Take this into account appropriatly...



28

Radio Image Segmentation with Random Walks

Tim Ruhe, HAP Workshop Aachen 2019

L. Linhoff
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Radio Image Segmentation with Random Walks

Tim Ruhe, HAP Workshop Aachen 2019

L. Linhoff
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Simulation: CORSIKA-Extension 

Tim Ruhe, HAP Workshop Aachen 2019

CORSIKA 100 %

0.3 %

0.18 %

0.11 %

D. Baack, Technical Report,
https://sfb876.tu-dortmund.de/PublicPublicationFiles/baack_2016a.pdf

Telescope Sim.

Cleaning

Precuts

Majority of particles in a 
shower does not contribute to

Cherenkov light seen by the
telescope.

D. Baack
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Simulation: CORSIKA-Extension  

Tim Ruhe, HAP Workshop Aachen 2019

! Replace FILO stack with Dynamic 
Stack

! Stop simulating particles w.o. 
Cherenkov contribution

! 70% performance increase for
FACT simulations

! Official part of CORSIKA as of
March 2017

D. Baack, Technical Report,
https://sfb876.tu-dortmund.de/PublicPublicationFiles/baack_2016a.pdf

D. Baack
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The FACT Open Data Project

! Observations of the Crab nebula
! Point source gamma-ray simulations
! Diffuse gamma-ray simulations
! Diffuse proton simulations
! Data are available in multiple formats and

at various stages of the analysis

! https://fact-project.org/data/

Tim Ruhe, HAP Workshop Aachen 2019
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Links

! FACT Open Data: https://fact-project.org/data/

! FACT Tools: https://github.com/fact-project/fact-tools

! aicttools: https://github.com/fact-project/aict-tools

! DSEA and DSEA+: https://sfb876.tu-dortmund.de/deconvolution/index.html

Tim Ruhe, HAP Workshop Aachen 2019
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Summary and Outlook 

Tim Ruhe, HAP Workshop Aachen 2019
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AUC

Valuable tool to identify and 
minimize data/MC 
disagreement

Feature selection provides 
major improvement of the 
achievable event rate

Selection can be easily adjusted 
to provide even higher event 
rate, when a lower purity is 
acceptable

Will be extended as soon as possible to pass2 (IC86%I +) (Corsika simulations 
missing)
! At least 700 000 neutrino events in the new sample (7 years)

Interested? Contact: mathis.boerner@icecube.wisc.edu or tobias.hoinka@icecube.wisc.edu
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Fig. 5 Angular Resolution as the 68 % containment distance between
reconstructed and true source position for simulated gamma ray events
with correctly classified sgn(disp).
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Fig. 6 Energy migration between estimated and true energy for simu-
lated gamma rays after event selection.

region selection. While the effect is negligible at higher en-
ergies, where the classification and regression perform best,
the lower energies are affected more strongly.

5.3 Energy Bias and Resolution

The migration between true and estimated energy for simu-
lated gamma-ray events after applying the source region and
gamma/hadron selection cuts is shown in Figure 6.

The the relative error of the estimated energy is calcu-
lated for each event:

Drel =
Eest �Etrue

Etrue
(2)

Per bin in true energy, the median and the interquantile
distance of the central 68 %-quantile of Drel are calculated,
which are called bias and resolution respectively. The results
are shown in Figure 7.
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Fig. 7 Bias and resolution of the energy estimation as median and half
width of the central 68 %-interval of the relative error Drel for simulated
gamma rays after event selection.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

(q / �)2

0

500

1000

1500

2000
tobs = 91.1h

NOn = 4664 NOff = 7160 a = 0.2
NExc = 3232.0±70.4 SLi&Ma = 58.9s

Fig. 8 Distribution of the squared distance between reconstructed and
assumend source position, for the Crab Nebula (on) and the five back-
ground regions (off). A clear excess corresponding to a significance of
58.9 s is visible.

5.4 Detection of the Crab Nebula

Applying the analysis methods described before to the 91 h
of Crab Nebula observations using the wobble observation
mode [5] and using five off sources in the analysis for the
background estimation results in a detection of the Crab
Nebula with a significance of 58.9 s according to the Li&Ma
likelihood ratio test[15], which corresponds to 6s/

p
h. The

integral sensitivity is calculated as the smallest flux as per-
centage of Crab Nebula flux, that would still yield a detec-
tion with a significance of 5sigma in an observation time of
50 h.

The on region contains both signal and background events,
while the off region only contains background. The size ra-
tio of off and on region is a . The relative sensitivity srel, is
the percentage of signal events, that still yields 5 sigma in
50 h of observation time. Both the signal and background
events have to be scaled to the reference observation time of


