

CTA Software and Science Data Management

<u>I. Oya</u>, M. Füßling, J. Hinton K. Kosack. *CTA Observatory*

The Cherenkov Telescope Array

Huge enhancement with respect to previous installations

 Sensitivity, energy range, resolution, field of view

Open observatory

- With 2 installations and more than 100 telescopes
- ESO/Chile (Paranal) and Spain (La Palma)
- Public call for observation proposals

• Many telescopes, 3 types – / technical challenge

- Several Petabyte of data expected every year
- A consortium with 31 Countries 203 Institutes, 1451 Members — Including the vast majority of the experts from existing experiments

How will CTA detect light?

Electromagnetic cascade

10 nanosecond snapshot

0.1 km² "light pool", a few photons per m².

Primary

CTA Software and Science Data Management | I. Oya

CTA Sites

CTA at Paranal & La Palma

ORM (La Palma, Spain)

5

CTAO Legal Entity

- In 2014, the CTA Observatory gGmbH was founded as interim legal entity, located at Heidelberg, under German law, to prepare the CTA implementation:
 - Select and prepare two array sites + HQ + Science Data Management Centre (SDMC)
 - CTAO Staff: 30 persons (Jan 2019)
 - Hiring, check CTAO webpage for positions
- The final legal entity for full construction, a *European Research Infrastructure Consortium* (ERIC), is being set up under European Union law (early 2020?)

The CTA consortium (CTAC)

CTA Observatory and Consortium

Input to the CTA design (CTA Consortium)

In-Kind contributions to construction (CTAC institutes)

Cash for construction (Agencies)

> **Operations** funding (Agencies)

Design and Construction of the full Observatory

Observatory

Observatory

Consortium

CTAC Key Science Projects Gal. plane survey Gal. center survey Extragal. survey LMC survey

...

Contributions to operation (CTAC institutes)

Operation of the full Observatory

Proposal-driven open user programme

CTA Observatory Operations

cta

- An Open Observatory / User Facility
 - For the first time in this waveband
 - Annual AoO, TAC ranking, long-term schedule
 - Proposal preparation support, tracking, helpdesk, ...
 - Public science data archive After proprietary period
- Two Telescope Arrays & HQ & SDMC one Observatory
 - Inter-site coordination
 - Uniform approach to science operations
- Main Challenges
 - Sub-array operation, wide field of view, instrument response generation, background modelling, rapid alert generation and response, data volume, science operations during construction
- A Software Instrument
 - Software plays a critical role in all steps of the Observatory

CTA Observatory Operations – Commitment

- "Data" is the final product of CTAO.
 - Everything else is "just support to get data".
- Operating CTA as an Observatory impacts many areas
 - Supplier Customer relationship
 - CTAO = Supplier, Science User = Customer
 - "Observatory" means "Commitment"
 - To deliver data of defined scope, quality and within time
 - To treat science users equally and fair
 - To keep the observatory at the forefront of state-of-the-art research
 - 30 years life time
 - Significant maintenance effort
 - Limited operations budget
 - Build, operate and maintain simple and robust CTA system

CTAO OPERATIONS

Initial calib./reduction \rightarrow Transmission from site \rightarrow Bulk data archive \rightarrow Science data archive

Science Operations – Implications

- Science Operations = Data processing + User
 Support Services + Computing Facilities Support
- Main elements for efficient and sustainable science operations include
 - Processing software
 - Computing facilities and storage
 - Expert people to run
 - Processing software
 - MC simulations
- Prepare and deliver science data to users
- User Support Services

Science Operations – Implications

- Science Operations = Data processing + User
 Support Services + Computing Facilities Support
- Main elements for efficient and sustainable science operations include
 - Processing software
 - Computing facilities and storage
 - Expert people to run
 - Processing software
 - MC simulations
- Prepare and deliver science data to users
- User Support Services

Call	for	Proposals

- Proposal Handling
- User support services
- Science Portal, FAQ, Newsletter
- PI interactions, incl. science alerts
- Provide tools for proposal preparation, data analysis
- Science planning
- Data processing and data quality monitoring
 - Data archiving
- MC simulations
- Provide instrument response functions
- Science Analysis tools

.

CTA Observatory and PI

Computing Challenges

- Reducing On-site Data Volume
 - 1000 PB/y directly coming out from cameras (mostly noise)
 - Impossible to transfer via internet link (see later)
- Storing and Processing Big Science Data:
 - Computing resource requirements imply distributed computing model
 - Data volume is too big to separate storage from computing
- Simulating CTA
 - Development of extensive air showers
 - Propagation of Cherenkov light
 - Cherenkov photon ray-tracing through the telescope optics to Camera
 - Photosensors simulation and camera electronics
- Developing a Data Processing Pipeline
 - PBs of data
 - Distributed team of developers.

(+many more computing challenges for e.g. control and supervision of 100 telescopes, sub-array operation, scheduling)

Computing Challenges

• Reducing On-site Data Volume

- 1000 PB/y directly coming out from cameras (mostly noise)
- Impossible to transfer via internet link (see later)
- Storing and Processing Big Science Data:
 - Computing resource requirements imply distributed computing model
 - Data volume is too big to separate storage from computing
- Simulating CTA
 - Development of extensive air showers
 - Propagation of Cherenkov light
 - Cherenkov photon ray-tracing through the telescope optics to Camera
 - Photosensors simulation and camera electronics
- Developing a Data Processing Pipeline
 - PBs of data
 - Distributed team of developers.

(+many more computing challenges for e.g. control and supervision of 100 telescopes, sub-array operation, scheduling)

What is Software Architecture?

Main CTA Systems

Science Operations

- Observation Execution System (OES)
- Data Processing and Preservation System (DPPS)
- Science User Support System (SUSS)
- "The HUB"

Technical Infrastructure

- Telescope (TEL) [*]
- Safety System
- Auxiliary Instruments (AUX)
- Array Infrastructure Elements (AIE)

[*] 1 to N telescope systems, several types

Observatory Operations and Administration

- Operations Support System (OSS)
- Management and Administrative System (MAS)

The CTA Observatory System Architecture

- Architecture summarizes all decisions taken in the project, with views representing the resulting system structures
- Complete scope: the whole CTAO System
- Integration architecture: Integrates all CTA (sub-)systems
- Includes everything: systems, stakeholders, processes, data, interfaces...
- Model-based and formal approach:
 - SysML/UML notation
 - Implemented in Enterprise Architect

CTA Software and Science Data Management | I. Oya

The CTA System Structure

The CTA System Structure

Data Flow & Analysis Categories

• Three analysis categories

- Cat A: at the sites, real time, robust, generate internal science alerts, online data quality
- Cat B: At the sites, offline (e.g. next day), tailored version of "C"
 → Higher sensitivity than Cat. A, at next morning
- Cat C: offsite, final analysis results with maximum sensitivity, much more computing (and time) required

Strong data reduction

 Data will be reduced art several levels, from the photon-detector data up to the data delivered to the science users.

Data Flow – From the Cameras to the User

Computer clusters at mainland

la

Solving the Data Volume Problem (I)

Computer clusters at mainland

CTA Pipelines: Common Core Package

Exploring technologies for the DPPS data centers

File Transfer	CERN FTS, DIRAC-DMS mirroring
Bulk Archive	CTA Archive Prototype (Xtreme DataCloud), DIRAC-DMS/SMS, CTA Data Model
Simulation	Corsika/SimTelArray, GROptics, ROBAST,
Pipelines	ctapipe, astripipe
Computing and workflow management	CTA-DIRAC, OPUS
User Interface	Lightweight Science Gateway, OPUS web interface, Dirac web interface.

CTA Science Operation Information Synchronization – "The Hub"

Role of the CTAO Science Data Management Centre at Zeuthen

- In charge of science operations and making CTA's science products available to the worldwide community
- Manage CTAO offsite processing software. In particular:
 - Data Processing and Preservation System (DPPS)
 - Science User Support System (SUSS)
 - Master node of "the HUB"

Models for Data Processing as part of Science Operations

- Different computing models under investigation for CTAO
- SDMC computing resources: local + CTAO Contributing institutes and (+ cloud?)

SDMC Building at the DESY Campus in Zeuthen

- New SDMC building as part of a DESY Zeuthen campus master plan
- Competition to design and construct a new building started
 - 1,200 s square metres of useable space
 - canteen
 - education centre
- Final decision on the winning design is planned for early March 2019

SDMC Building at the DESY Campus in Zeuthen

- New SDMC building as part of a DESY Zeuthen campus master plan
- Competition to design and construct a new building started
 - 1,200 s square metres of useable space
 - canteen
 - education centre
- Final decision on the winning design is planned for early March 2019

SDMC – Now

- 2 CTAO staff already allocated in an existing building on campus
 - Me and MF SW teams coordination
- Room for adding immediately 6 more
 - will grow to support the construction of the CTA software products and to organize science operations
- Already significant activity in our meeting room

Conclusions and Outlook

- CTA will work as an observatory.
 - Service work & commitment
- CTA requires well designed software systems in order to manage its almost 120 telescopes and the data they will produce as a single efficient system
 - An architecture-driven solution is fundamental
 - Software frameworks, standard technologies and high-performance solutions are required

36

1. Somber

- Several PB/y raw data to be handled
- CTA science operations will be managed by the SDMC at Zeuthen
- CTA software entering the construction phase

Register now

WHEN/

6-9 MAY 2019

WHERE/

Teatro Duse

Via Cartoleria 42, Bologna

Backup

CTA Software and Science Data Management | I. Oya

Processes of the CTA Observatory

- Process-based analysis
- Covering full scope of CTA
- 150+ processes at different levels of abstraction
- Modeled with tailored activity diagrams

Process diagrams specify and document design decisions:

- Tailored activity diagrams
- Conceptual data flow
- Performing system and/or human actor ("stakeholder") CTA Software and Science Data

Management | I. Oya

40

Architecture Reference Documentation

cta

- Reference Documentation for each individual system
- Input for detailed (sub-)system architecture and product-level requirements
- Includes scope, context, functionality and interfaces
- Diagrams and accompanying specifications and notes

4.3.6.4 Main Processes

The main processes to which the OES contributes are (only top two levels listed)

- Observe with CTA: from Announcement of Opportunity to Scientific Result

 Schedule Refinement: from Long-Term Schedule to Short-Term Schedule
- b. Observation Execution: from Short-Term Schedule to Collected Data
- c. React to Target of Opportunities: from Received Science Alert to Updated Short-Term Schedule
- d. Science Alert Generation: from Collected Data to Generated Science Alert
- e. Process Data: from Collected Data to Archived Science Products
 2. Maintenance: Maintain Systems from Issue Identification to verified Overhaul
- Maintenance: Maintain Systems from issue identification to verified Overhaul a. Calibration: Perform, Check and Refine Calibration and Calibration Instruments
- b. Issue Identification: from Collected Data to Identified Issue
- c. Maintenance and Upkeep: from Identified Issue to Verified Maintenance, Calibration or other Action

SUMM	ARY
	Summary table
NAME	AND ACRONYM
	Name and acronym of the system used throughout the section.
SCOPE	
	Summary of the main responsibilities and functionalities of the system under discussion.
CONTI	EXT
	Environment of the system under discussion showing the main interactions and information flow with the surrounding internal and external systems and stakeholders.
USERS	/STAKEHOLDERS
-	EXTERNAL USERS
	External users of the system which interact with the system and are supported by the system to execute certain actions. The users can be external or internal to the CTAO.
-	INTERNAL USERS
	Internal users of the system which interact with the system and are supported by the system to execute certain actions. The users can be external or internal to the CTAO.
MAIN	DATA ELEMENTS
	Main conceptual data elements that are exchanged with the users and other systems (either as produced or consumed data) and are handled and/or stored within the system under discussion.
FUNC	TIONALITY
-	USER-SUPPORTED PROCESSES AND ACTIONS
	Main actions and related processes in which the system supports an internal or external stakeholder.
-	AUTOMATIC PROCESSES AND ACTIONS
	Main actions and related processes that are performed by the system.
INTER	FACES
	List of all the main interfaces with their purpose.
DEPLO	YMENT
	Number of instances of the system currently envisaged to run simultaneously (single or multiple instances) and its deployment location (either on site, off site or both).

NOTES

Additional notes.

CTA Software and Science Data Management | I. Oya