

Data engineering for joint analysis of different astroparticle data in GRADLC project

Big Data Science in Astroparticle Research, Aachen University Victoria Tokareva for GRADLC Consortium | 18-20 February 2019

INSTITUTE FOR NUCLEAR PHYSICS (IKP)

Big data in astroparticle physics (APP)

Modern astroparticle experiments data rate [Gbytes/day]*

- Wide range of experiments;
- More than hundred years of cosmic particle measurements;
- Looking at the same sky with different detectors;
- Common data rate for astroparticle physics experiments all together is a few PBytes/year, which is comparable to the current LHC output*
- Big data for deep learning

*Berghöfer T., Agrafioti I. et all. Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016

Introduction

Software data life cycles

- **Data engineering** includes development and support of data architecture and a data pipeline for a platform that enables data analysts, scientists, and other personnel to query the data.
- Data Life Cycle (DLC) is the sequence of stages that a particular unit of data goes through from its initial generation or capture to its eventual archival and/or deletion. The typical data life cycle includes data gathering, processing, storage, analysis, sharing and archiving.

Data engineering in APP

- GRADLC initiative and main objectives
- Features of DLC in APP
- KASCADE Cosmic-ray Data Center
- Proposed DLC architecture
- Data aggregation server: metadata, data summary and workflows
- Application server: conception, computing sources and analysis
- Outlook

Introduction

German-Russian Astroparticle Data Life Cycle Initiative*

Matrosov Institute for System Dynamics and Control Theory

KASCADE - Grande

*Granted by RSF-Helmholtz Joint Research Groups

Introduction

Data life cycle

Conclusion

Victoria Tokareva - Data engineering for astroparticle physics

The main objectives

- Provide sustainable access to scientific data
- Archiving of Data and Metadata
- Providing analysis tools
- Education in Big Data Science

- Development area for multi-messenger analyses (e.g. Deep Learning)
- Platform for communication and exchange within Astroparticle Physics

Features of DLC in APP

- Constantly growing precision and data amounts;
- Rare events and low statistics;
- Call for multi-messenger astrophysics;
- Need for various data in analysis;
- Data mining in astroparticle data;
- Need for advanced storage architectures and smart data selection queries.

KASCADE Cosmic-ray Data Center (KCDC)

- providing free, unlimited, reliable open access to KASCADE cosmic ray data at https://kcdc.ikp.kit.edu;
- almost all KASCADE data is available;
- selection of fully calibrated quantities and detector signals;
- information platform: physics and experiment backgrounds, tutorials, meta information for data analysis;
- archive of KASCADE software and data;
- uses modern and open source web technologies.

DLC Architecture

- Si local data storages;
- Ini data sources of different types;
- MDD metadata description;
- Ei metadata extractors;
- Ai adapters, provide API for data access;
- TPL template library;
- MD DB metadata database.

Introduction

Requirements for the data warehouse

- Multiple experiments (TAIGA, KASCADE, etc.)
- More than hundreds of terabytes of raw data at each site
- Remote access to query results as local file systems
- On-demand data transfer by requests only
- Automatic real-time updates
- No changes to existing site infrastructure, only add-ons

Proposed solution for data aggregation

Main solution components: CVMFS, PostgreSQL, TPL

Introduction

Data life cycle

Conclusion

Proposed cosmic-ray metadata structure

Introduction

Data life cycle

Conclusion

Victoria Tokareva - Data engineering for astroparticle physics

Data workflow

Introduction

Data workflow

Aim: to provide user the opportunity to analyze the data selected remotely.

Computing sources: CR local network, clusters (GRIDKa, BW-HPC, etc.), external clouds (Exoscale, OpenNebula, Amazon, Google, etc.). **Possible solutions**: HTCondor or HTCondor-based workload management systems: VCondor, Panda, Dirac.

Analysis could be either algorithmic or machine learning;

 Machine learning requires large enough statistics in order to work properly.

Open access and education

- Open access: a dedicated portal planned
- Education: astroparticle.online

Outlook

- There are no standard solutions so far for careful sharing and managing large data volumes from various APP experiments, but they are in a high demand;
- The Astroparticle Data Life Cycle data ecosystem is in development by participants of GRADLC Consortium, and based on already existing data portal KCDC and a well-known instruments widely used in particle physics;
- The first stage of development includes building aggregation data server and performing the proof-of-principle joint analysis of data from KASCADE and TAIGA experiments are currently being developed;
- Access to the project resource is now partially provided through the astroparticle.online web-portal;
- Most of the data of KASCADE-Grande are available on KCDC web-portal: https://kcdc.ikp.kit.edu/

Introduction

The German-Russian Astroparticle Data Life Cycle collaboration I

KASCADE - Grande

TAIGA—Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy (see taiga-experiment.info);

KASCADE-Grande—KArlsruhe Shower Core and Array DEtector—Grande (see www-ik.fzk.de/KASCADE_home.html);

KIT-IKP—Institute for Nuclear Physics Karlsruhe Institute of Technology

SCC—Steinbuch Centre for Computing Karlsruhe Institute of Technology

The German-Russian Astroparticle Data Life Cycle collaboration II

SINP MSU—Skobeltsyn Institute Of Nuclear Physics Lomonosov Moscow State University

ISU—Irkutsk State University

ISDCT—Matrosov Institute for System Dynamics and Control Theory

References

 Berghöfer T., Agrafioti I. *et al.* Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016, web-source: http://appec.org/wp-content/uploads/ Documents/Docs-from-old-site/AModelForComputing-2.pdf;

- KCDC—KASCADE Cosmic Ray Data Center, web-source: http://kcdc.ikp.kit.edu;
- KASCADE-Grande official site, web-source: http://www-ik.fzk.de/KASCADE_home.html;
- TAIGA collaboration official site, web-source: http://taiga-experiment.info;
- Astroparticle.online—outreach resource, web-source: http://astroparticle.online.