technische universität dortmund

Exploring Antarctic Ice Properties Using Generative Neural Networks

Sebastian Bange, Mirco Hünnefeld, Alexander Harnisch

19.02.2019

lehrstuhl physik e5

29

sebastian.bange@tu-dortmund.de

Detector

Ice Model

- Light gets absorbed:
 - Mean free path = $[a]^{-1}$
 - Absorption coefficient a
- Light scatters:
 - Mean free path = $[b(1 \langle \cos \theta \rangle)]^{-1}$
 - Scattering coefficient b
- Depth dependent coefficients
 - Describe the ice in layer
 - 10m per layer
 - 170 layer in total

Flasher Runs

- Each DOM has 12 LEDs
- Flash one LED per "flasher event"
- Nearby DOMs measure the waveform

Flasher runs

Flasher runs

Photon Propagation Code

- Initialize photon at source
- While photon is not absorbed:
 - Calculate straight path distance
 - Does it hit a DOM?
 - No \rightarrow continue
 - Yes → log which DOM and travel time
- Use only one flasher as source for now

Flasher Runs

- Each DOM has 12 LEDs
- Flash one LED per "flasher event"
- Nearby DOMs measure the waveform

Idea:

- Simulate the events to estimate the waveform
- Use a network of fully connected layers
- Reverse the network to predict the coefficients

Neural Network

- All 340 coefficients drawn uniformly:
 - ■ $a \in [0,002; 0,05]$
 - $b \in [0,007;0,2]$
- Input: 9 layer around flasher
 - \leftrightarrow 18 parameters
- Two hidden layer with 256 parameters each
- Output: 73 DOMs, 20 bins each
 - \leftrightarrow 1460 parameters
- Loss: MSE, optimizer: adam
- Train events: 8778
- Validation events: 976

Neural Network – Loss

Neural Network – Prediction

Neural Network – Prediction

Neural Network – Conclusion

- Converges quickly
- Shows promising results with low number of training events
- No signs of overfitting yet
- Smoothens the waveform
 - → Reduced dependence on statistical fluctuations

Next step:

Test if network is reversible by scanning the loss

Neural Network Manual Loss Scan

0.000027 0.000024 0.000021 0.000018 0.000015 თ 0.000012 ^O 0.000009 0.000006 0.000003 0.000000

Neural Network Manual Loss Scan

Neural Network – Reversed

- Smooth loss function
- True minimum should be easily found
- Rough estimate: Predictions are within 5% of validation data

Conclusion and Outlook

- Waveform can be predicted accurately
- The network can easily be reversed due to the smooth loss function

Next steps:

- Extend the network to flash one full string
- Predict all 340 coefficients at one time
- Get much more statistics in the relevant interval
- Predict with real data

Neural Network – Loss Difference

