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Tokamak a Configuration Variable (TCV)
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Nuclear Fusion to produce electricity
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Why Tokamaks? Record of produced energy at JET 

JET, EU, Dec 21st, 2021  
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59 MJ 
for 5s!
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ITER, feasibility of fusion energy

~500 MW 

External 
Heating

 ~50 MW

The step before DEMO 

(demonstration fusion reactor)
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~1g of fuel in 840m3!



τ ~ 10-10 s

l ~ 10-4 m

τ ~ 103 s

l ~ 1 m

• Multiscale

• Multiphysics

• Intrinsic nonlinearity

• Turbulent dynamics

• Extreme anisotropy

• Complex geometry

Simulations and control in fusion: a fascinating challenge
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PLASMA

NEUTRAL ATOMS

IMPURITIES

RADIATION

PLASMA-SOLID 

INTERACTION

ENERGETIC 

(non-thermal) 

PARTICLES

• Multiscale

• Multiphysics

• Intrinsic nonlinearity

• Turbulent dynamics

• Extreme anisotropy

• Complex geometry
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Simulations and control in fusion: a fascinating challenge
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• Multiscale

• Multiphysics

• Intrinsic nonlinearity

• Turbulent dynamics

• Extreme anisotropy

• Complex geometry
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Simulations and control in fusion: a fascinating challenge



• Multiscale

• Multiphysics

• Intrinsic nonlinearity

• Turbulent dynamics

• Extreme anisotropy

• Complex geometry
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Simulations and control in fusion: a fascinating challenge



12

▪Tokamaks are one of the most complex system in nature…

Data in fusion: another challenge

▪Massive amount 
of data (Big data – 
2PB/day at ITER, 
high bandwidth 
diagnostics)

▪High-dimensionality 
(many diagnostics 
measuring various plasma 
properties)

▪Heterogenous (various 
formats, facility dependent 
data ecosystem) 

▪Multi-scales, multi-
physics (integrated 
tokamak modeling)
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Advancing fusion with ML & AI

AI 

& ML

Scientific 
discovery

Boosted 
diagnostics

Data-
enhanced 
prediction

Real-time 
control

Model 
reduction

▪Reduced  & 
Surrogate 
models

▪Disruptions, 
transient 
events

▪Assisting experimental 
design, large dataset 
exploration

▪Information 
extraction,  
data fusion

▪Plasma state 
monitoring & 
control
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Thermal loads & catastrophic losses of confinement

Possible serious 

damage to ITER 

structure
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Continuous control and disruption prevention
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Continuous control and disruption prevention



The TCV Plasma Control System (PCS) 17

▪ Separation of tokamak 
dependent and agnostic 
layers

▪ Generic implementation

▪ Flexible framework 
allowing easy 
maintenance and 
upgrade

▪ Concepts of integration 
and portability

REF: [T. Vu et al. IEEE TNS 2021]         
REF: [F. Felici et al. IAEA 2021]         
REF: [C. Galperti et al  IAEA TM on Plasma Control Systems 2021]
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Plasma control by deep reinforcement learning

REF: J. Degrave, F. Felici  et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022
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Plasma control by deep reinforcement learning

[Figure and RL slide material from hereon: courtesy A. Abdolmaleki]

▪ TCV Free-boundary simulator

REF: J. Degrave, F. Felici  et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022

▪ Agent tries to learn a control policy mapping states 
(observations) to actions

▪ MPO: Actor-Critic RL implementation for continuous-valued 
states

▪ Deep RL: recurrent architecture to efficient model of long-
range dependencies (plasma dynamics)
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Plasma control by deep reinforcement learning
▪ Free-boundary simulator for the Tokamak magnetic 

equilibrium

• Solve coupled system of equations:

▪ Circuit equations for time evolution of currents, 
coupled equations for Coils, Passive conductors 
(vessel), Plasma

▪ Grad-Shafranov equation (ideal MHD force balance: 2D 
static, elliptic PDE) to determine plasma equilibrium 
depending on external currents and internal constraints 
(provided)

• Typically, ~hours for simulating a few seconds 
discharge (50,000 steps / s) of plasma evolution.

REF: J. Degrave, F. Felici  et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022

▪ TCV Free-boundary simulator
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▪ What we need to control:

• Total plasma current Ip ;     Radial position R

• Vertical position Z;              Plasma shape (LCFS, etc.)
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Plasma control by deep reinforcement learning

REF: J. Degrave, F. Felici  et al., Nature, 2022
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• MPO: Actor-Critic RL implementation for continuous-valued states

• Stable (constrains deviation from the current policy)

• efficiently explores continuous state-action spaces

• Efficient data sampling

• Robust against uncertainties

• Distributed implementation: many actors run in parallel…

• Off-policy: also use data generated using previous policies

Actor: learns the control policy 𝝅 (taking 

policy gradients on the Q function learned 

by the critic) -> “small” feedforward NN

Critic:  learns the Q function from the data 

generated by the interaction of the actor(s) 

with the environment (estimates expected 

cumulative future rewards) -> deep 

recurrent NN
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Plasma control by deep reinforcement learning

REF: J. Degrave, F. Felici  et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022
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Plasma control by deep reinforcement learning

REF: J. Degrave, F. Felici  et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022
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Plasma control by deep reinforcement learning

REF: J. Degrave, F. Felici  et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022
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25Plasma trajectories: control objectives & optimization 

H-mode 
degradation 

• Increasing gas flux

• Pedestal degradation

L-H back 
transition

• Density limit in H-mode: HL

• Enhanced edge turbulent transport and 
collisionality 

Edge  Cooling

• Edge pressure collapse

• MARFE X-point > HFS > TOPMARFE onset

•  Ip channel contraction

• Global cooling of the edge

MHD

• (2,1) mode growths & locks

• Vertical displacement (TCV)

DISRUPTION

▪ High-performance Density Limit 
dynamics described through 
trajectories in a physics-based 
“state space” [H98y,2-ne-crit-norm] 

▪ Reduced set of variables to 
describe the relevant system 
dynamics… but sometimes the 
operational space is complex 
and high-dimensional (hidden 
factor, etc.)

#68643
(NO-BAFFLES)
#68643
(NO-BAFFLES)

#64924
(BAFFLES)
#64924
(BAFFLES)

t[s]t[s]

#68643
(NO-BAFFLES)

#64924
(BAFFLES)

t[s]

ne-crit-norm

d = 0.15

d = 0

High 
danger 

level
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▪Trajectory allows mapping the distance from 
operational/disruption boundaries to probabilities of 
transition to specific states (occurrence of an event) 

SE
Q

U
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C
E 
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▪Sequence-based model: a variational autoencoder (transformer, GPT-alike 
architecture) leveraging multi-task learning.

▪Multi-task learning: by learning tasks jointly(supervised and unsupervised), 
the model can discover common features or structures across tasks (shared 
representation). 

REF: A. Buerli, A. Pau et al, ArXiV 2025

Latent variable models for plasma state monitoring

time2boundary regression

disruptivity classification

Input state 
reconstruction

Smooth latent 
trajectory movement
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Plasma State Monitoring with sequence-based DL 27

▪Discharge plasma state 
evolution in time projected on 
the learned low-D latent space 
representation (zero-centred 
and with spherical edges).

▪Smoother trajectories with 
movement penalty

▪Two main and diverging paths 
along which the state can 
evolve towards the boundary 
condition, which corresponds 
to two different disruptions 
dynamics at JET
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REF: A. Buerli, A. Pau et al, paper sumbitted
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x1

x2

REF: A. Buerli, A. Pau et al, paper submitted

Plasma State Monitoring with sequence-based DL
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Latent variable models for disruption monitoring
Sequential VAE with multimodal prior

x x

z

▪ Project disruptive boundaries & 
physics quantities to inspect 
connections

▪ Project full discharges to track proximity 
to disruption

▪ Future: Investigate identified modes in 
posterior distribution

▪ Future: Discretize projections as 
sequences of states

TCV

29

[Poels et al. WIP]

Swiss Data Science Center
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▪ Scientific machine learning for building simulators that combine physics + machine learning

▪ Reinforcement learning to design trajectories and controllers to meet operator specifications that 
are robust to physics uncertainty 

▪ Trajectory: sequence of states, actions, and rewards that an agent experiences as it 
interacts with the environment. 

▪ Neural State Space Models (NSSM) to learn the temporal dynamics of some observed 
quantities in response to actions (physics structure and data-driven models).

A. Wang, A. Pau, et al.  Submitted 
to Nature Communications

Plasma trajectories optimization with physics constraints 

30

COLLABORATION WITH MIT
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Plasma trajectories optimization with physics constraints 

Reward function 

Reward function parameters 
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COLLABORATION WITH MIT
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Plasma trajectories optimization with physics constraints 
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▪ Initial trial with Proximal Policy 
Optimization (PPO), before moving 
to an “Evolutionary Strategies” 
(OpenAI-ES), an algorithm designed 
for policy optimization. 

▪ ES approaches provide an efficient 
framework for problems with long 
time horizons and actions that have 
long-lasting effects.



▪ AI & ML bridging the gaps between 
modeling, simulation and experiments:

Summary and outlook

• Integration of AI technologies to enhance interpretation capabilities, 
exploration of alternative ideas in virtual simulated environments to enable 
scientific discovery.

• Reinforcement learning can enable advanced plasma control, allowing 
the design of optimal control policies in complex environments leveraging 
modeling, simulation and experimental data

33

THE FUTURE: DIGITAL TWINS

NVIDIA Omniverse
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Backup slides

Backup 
slides
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AI & ML challenges in fusion 

35

REF: D. Smith, IAEA AI4Atoms, 2021

International Atomic Energy Agency (IAEA) Consultancy Meeting on Artificial Intelligence for Nuclear Fusion Research
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