

Reinforcement Learning for Autonomous Accelerators (RL4AA) Collaboration

Plasma integrated control and trajectory optimization via reinforcement learning: applications in magnetic confinement fusion

Alessandro Pau

Swiss Plasma Center

alessandro.pau@epfl.ch

03/04/2025

Swiss Plasma Center

EPFL Swiss Plasma Center - EPFL

EPFL Swiss Plasma Center - EPFL

EPFL Tokamak a Configuration Variable (TCV)

EPFL Nuclear Fusion to produce electricity

Magnetic confinement fusion in brief

 For thermonuclear fusion one needs a high product of temperature, density, and confinement. Typically, T>100MK

- Matter is in the *plasma* state
 - ions and electrons are dissociated.
- Magnetic fusion: keep the plasma confined by magnetic fields

Tokamaks

- Axisymmetric configuration: toroidal (donut) shape with nested flux surfaces.
- plasma confined by superposition of 2 magnetic fields:
 - Toroidal field generated by external coils
 - Poloidal field generated by current in plasma

Swiss Plasma Center

EPFL Why Tokamaks? Record of produced energy at JET

EPFL ITER, feasibility of fusion energy

Swiss

Plasma Center

EPFL Simulations and control in fusion: a fascinating challenge

- Multiscale
- Multiphysics
- Intrinsic nonlinearity
- Turbulent dynamics
- Extreme anisotropy
- Complex geometry

EPFL Simulations and control in fusion: a fascinating challenge

- Multiscale
- Multiphysics
- Intrinsic nonlinearity
- Turbulent dynamics
- Extreme anisotropy
- Complex geometry

Simulations and control in fusion: a fascinating challenge EPFL

- Multiscale
- Multiphysics
- Intrinsic nonlinearity
- Turbulent dynamics
- Extreme anisotropy
- Complex geometry

10

EPFL Simulations and control in fusion: a fascinating challenge

- Multiscale
- Multiphysics
- Intrinsic nonlinearity
- Turbulent dynamics
- Extreme anisotropy
- Complex geometry

EPFL Data in fusion: another challenge

Tokamaks are one of the most complex system in nature...

Massive amount

of data (Big data – 2PB/day at ITER, high bandwidth diagnostics)

Heterogenous (various

formats, facility dependent data ecosystem)

High-dimensionality

(many diagnostics measuring various plasma properties)

Multi-scales, multiphysics (integrated tokamak modeling)

EPFL Advancing fusion with ML & Al

Thermal loads & catastrophic losses of confinement EPFL

Possible serious damage to ITER structure

Swiss Plasma Center

EPFL

April. 2025

3rd

A. Pau | RL4AA 2025 | Hamburg,

Continuous control and disruption prevention

EPFL

Continuous control and disruption prevention

3rd April. 2025

A. Pau | RL4AA 2025 | Hamburg,

The TCV Plasma Control System (PCS)

- Separation of tokamak dependent and agnostic layers
- Generic implementation
- Flexible framework allowing easy maintenance and upgrade
- Concepts of integration and portability

Swiss Plasma Center

REF: [C. Galperti et al IAEA TM on Plasma Control Systems 2021]

DeepMind

REF: J. Degrave, F. Felici et al., Nature, vol. 602, no. 7897, pp. 414–419, Feb. 2022

Swiss

Plasma

Center

[Figure and RL slide material from hereon: courtesy A. Abdolmaleki]

- Agent tries to learn a control policy mapping states (observations) to actions
- MPO: Actor-Critic RL implementation for continuous-valued states
- Deep RL: recurrent architecture to efficient model of longrange dependencies (plasma dynamics)

TCV Free-boundary simulator

- Free-boundary simulator for the Tokamak magnetic equilibrium
 - Solve coupled system of equations:
 - **Circuit equations** for time evolution of currents, coupled equations for *Coils*, *Passive conductors* (vessel), *Plasma*
 - Grad-Shafranov equation (ideal MHD force balance: 2D static, elliptic PDE) to determine plasma equilibrium depending on external currents and internal constraints (provided)
 - Typically, **~hours for simulating** a few seconds discharge (50,000 steps / s) of plasma evolution.
- What we need to control:
 - Total plasma current *I_p* ;
 - Vertical position **Z**;

Radial position **R** Plasma shape (**LCFS**, etc.) TCV Free-boundary simulator

- MPO: Actor-Critic RL implementation for continuous-valued states
 - Stable (constrains deviation from the current policy)
 - efficiently explores continuous state-action spaces
 - Efficient data sampling
 - Robust against uncertainties
- Distributed implementation: many actors run in parallel...
- Off-policy: also use data generated using previous policies

Actor: learns the control policy π (taking policy gradients on the Q function learned by the critic) -> "small" feedforward NN

Critic: learns the **Q** function from the data generated by the interaction of the actor(s) with the environment (estimates expected cumulative future rewards) -> **deep recurrent NN**

Swiss

Plasma

Center

Swiss

Plasma

Center

EPFL

Plasma trajectories: control objectives & optimization ²⁵

t[s] TCV 1.5 1.6 2.2 H-mode #68643 degradation (NO-BAFFLES) 1.5 2 EVENTS 1.4 L-H back 1.8 *d* = 0.15 H98y,2 0.15 1.3 Р 1.6 #64924 d = 0SEQUENCE 1.2 (BAFFLES) MARFE onset 0.15 1.4 High 1.1 danger 1.2 level 1 Edge Cooling 0.5 0.9 0.6 0.8 1.2 1.4 1.6 MHD n_{e-crit-norm}

 High-performance Density Limit dynamics described through trajectories in a physics-based "state space" [H98y,2-n_{e-crit-norm}]

 Reduced set of variables to describe the relevant system dynamics... but sometimes the operational space is complex and high-dimensional (hidden factor, etc.)

DISRUPTION Swiss Plasma

Center

Trajectory allows mapping the distance from operational/disruption boundaries to probabilities of transition to specific states (occurrence of an event)

Latent variable models for plasma state monitoring

Sequence-based model: a variational autoencoder (transformer, GPT-alike architecture) leveraging multi-task learning.

Multi-task learning: by learning tasks jointly(supervised and unsupervised), the model can discover common features or structures across tasks (shared representation).

EPF

Plasma State Monitoring with sequence-based DL

- Discharge plasma state evolution in time projected on the learned low-D latent space representation (zero-centred and with spherical edges).
- Smoother trajectories with movement penalty
- Two main and diverging paths along which the state can evolve towards the boundary condition, which corresponds to two different disruptions dynamics at JET

REF: A. Buerli, A. Pau et al, paper sumbitted

EPFL

Swiss Plasma Center

X₁

Plasma State Monitoring with sequence-based DL

28

Swiss Plasma Center

A. Pau | RL4AA 2025 | Hamburg, 3rd April. 2025

EPFL Latent variable models for disruption monitoring

Sequential VAE with multimodal prior

- Project disruptive boundaries & physics quantities to inspect connections
- Project full discharges to track proximity to disruption
- Future: Investigate identified modes in posterior distribution
- Future: Discretize projections as sequences of states

Swiss

Center

EPFL Plasma trajectories optimization with physics constraints

COLLABORATION WITH MIT

- Scientific machine learning for building simulators that combine physics + machine learning
- Reinforcement learning to design trajectories and controllers to meet operator specifications that are robust to physics uncertainty

A. Wang, A. Pau, et al. Submitted to Nature Communications

- **Trajectory**: sequence of states, actions, and rewards that an agent experiences as it interacts with the environment.
- Neural State Space Models (NSSM) to learn the temporal dynamics of some observed quantities in response to actions (physics structure and data-driven models).

Swiss Plasma

Center

EPFL Plasma trajectories optimization with physics constraints

COLLABORATION WITH MIT

Reward function

Reward function parameters

Category	Parameter	Value
Hard Limits	<i>fg</i> w	1.0
	1 95	0.5
Soft Limits	fgw	0.8
	β_p	1.75
	γ_{vgr}	0.75
	195	0.313
Parameters	c _{time}	5.0
	CI_p	1.0
	cw	1.0
	c_{soft}	1.0×10^{3}
	Chard	5.0×10^4

Predictions and Constraints

Time (s)

31

A. Pau | RL4AA 2025 | Hamburg, 3rd April. 2025

Swiss

Plasma Center

EPFL Plasma trajectories optimization with physics constraints

- Initial trial with Proximal Policy
 Optimization (PPO), before moving
 to an "Evolutionary Strategies"
 (OpenAI-ES), an algorithm designed
 for policy optimization.
- ES approaches provide an efficient framework for problems with **long time horizons** and actions that have **long-lasting effects**.

Swiss

Plasma

Center

32

EPFL Summary and outlook

• AI & ML bridging the gaps between

modeling, simulation and experiments:

THE FUTURE: DIGITAL TWINS

NVIDIA Omniverse

- Integration of AI technologies to enhance interpretation capabilities, exploration of alternative ideas in virtual simulated environments to enable scientific discovery.
- Reinforcement learning can enable advanced plasma control, allowing the design of optimal control policies in complex environments leveraging modeling, simulation and experimental data

EPFL Backup slides

Backup slides

EPFL AI & ML challenges in fusion

REF: D. Smith, IAEA AI4Atoms, 2021

➡1. Data ecosystems and cross-device datasets

- Challenges: facility-specific data access, format, and schema; database curation; unsupervised or semisupervised learning for automated labelling
- MFE area: disruptions, ELMs, instabilities

2. Extrapolation to new devices and transfer learning

- Challenges: strategies for transfer or extrapolation; institutional policies for operational certification
- MFE area: <u>extrapolation to ITER</u>; transfer learning to a new device

⇒3. Real-time control and prediction

- Challenges: streaming data, advanced compute hardware (FPGA, ASICs)
- MFE area: <u>disruption mitigation</u>, stability boundaries

➡4. Near-real-time analysis

- Challenges: multi-channel, high-bandwidth data; automated analysis; advanced compute hardware
- MFE area: fast cameras, multi-channel fluctuation diagnostics, magnetics

- **⇒**5. Surrogate models for simulations
 - Challenges: robustness, convergence
 - MFE area: <u>plasma-surface interactions</u>, turbulence and transport, RF, stellarator configuration, multi-scale calculations

➡6. Physics-based models

- Challenges: strategies to blend physics and ML models; Bayesian inference
- MFE area: ELMs and stability boundaries
- **→7.** Big data
 - Challenges: <u>data product pipeline</u>, automated analysis, data mirroring and provenance
 - MFE area: 2 PB/day at ITER, high bandwidth diagnostics

⇒8. Plant operation

- Challenges: real-time monitoring and information synthesis
- MFE area: thermal power generation, nuclear environment, cryogenics, superconducting magnets, vacuum systems, and diagnostic instrumentation

