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=PFL  Nuclear Fusion to produce electricity

= Magnetic confinement fusion in brief
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« Tokamaks

* For thermonuclear fusion one needs a
high product of temperature, density, and
confinement. Typically, T>100MK

F. B @ + Matter is in the plasma state

l = ' = jons and electrons are dissociated.
» Magnetic fusion: keep the plasma

o confined by magnetic fields

» Axisymmetric configuration: toroidal (donut) shape with
nested flux surfaces.

+ plasma confined by superposition of 2 magnetic fields:
= Toroidal field generated by external coils
* Poloidal field generated by current in plasma

Inner poloidal field coils
(primary transformer circuit)

Poloidal magnetic field

Resulting helical magnetic field

Plasma electric current
(secondary transformer circuit)

/

Outer poloidal field coils

(for plasma positioning and shaping

Toroidal field coils

Toroidal magnetic field



=rrL. Why Tokamaks? Record of produced energy at JET

JET, EU, Dec 215, 2021
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=prL [TER, feasibility of fusion energy
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The step before DEMO
(demonstration fusion reactor)

——————
Major Radius (m)

DEMO

- 2200 m®

~500 MW

~1g of fuel in 840m?3!
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=PFL  Simulations and control in fusion: a fascinating challenge

 Multiscale
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=PFL  Simulations and control in fusion: a fascinating challenge

PLASMA

n
=
2 o
< L] SR
< = T EuY
o A4 020
D) ol W <
_._NL = Z 9«
e w & a
)
O
L n
o] >
&) L
N o
= =
- -
= =
o (] o o o

G20z ‘|udy g ‘BinqureH | G20z Yy 1d | ned v

RADIATION

PLASMA-SOLID
INTERACTION

Bl Swiss
Plasma
Center



A. Pau | RL4AA 2025 | Hamburg, 3@ April. 2025

Bl Swiss

=PFL  Simulations and control in fusion: a fascinating challenge

» Multiscale ‘

* Multiphysics
* Intrinsic nonlinearity v
* Turbulent dynamics

« Extreme anisotropy

Plasma
Center
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=PFL  Simulations and control in fusion: a fascinating challenge

* Multiscale NEAL
* Multiphysics

* Intrinsic nonlinearity

* Turbulent dynamics
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« Extreme anisotropy

« Complex geometry
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=PrL  Data in fusion: another challenge
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"Tokamaks are one of the most complex system in nature...

®Massive amount

of data (Big data —
2PB/day at ITER,
high bandwidth
diagnostics)

"Heterogenous (various
formats, facility dependent
data ecosystem)

"High-dimensionality
(many diagnostics
measuring various plasma
properties)

" Multi-scales, multi-
physics (integrated
tokamak modeling)
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Advancing fusion with ML & Al

" Assisting experimental
design, large dataset
evvEl  exploration

Scientific

"Reduced &
Surrogate Vodel "|Information
models reduction Boosted extraction,

diagnostics .
2 data fusion

"Plasma state "Disruptions,

: : : Data- i
monitoring & Rea|-t.n|]e enhanced transient
control contro prediction events
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L Thermal loads & catastrophic losses of confinement
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=pEL Continuous control and disruption prevention

DISRUPTION PREVENTION .: DISRUPTION
!
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* DISRUPTION PREVENTION | Flattop phase | — ‘
a key requirement for i /
plasma control throughout | g
the entire evolution of the | %
' |
discharge | REF. TARGET %
|
Time (s)
PERFORMANCE
f VS RisK OF Loss OF CONTROL

STABILITY limits  cONTROLLABILITY limits

REF: [A. Pau et al IAEA TM on Disruptions 2020]

B Swiss REF: [J. Barr et al IAEA TM on Disruptions 2020]
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= DISRUPTION PREVENTION
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Continuous control and disruption prevention

Break down in different
“control phases”:

REF. SCENARIO

keep the target
scenario stable
again disturbances
(ST, ELM, MHD
modes, etc.)

DISRUPTION PREVENTION

»

PROXIMITY CONTROL

= keep stability while
pushing performance by
regulating proximity to
stability & controllability

|
|
|
|
|
|
|
|
|
' boundaries

REFERENCE
SCENARIO

Flattop phase

REF. TARGET

e

PROXIMITY CONTROL

Time (s)

DISRUPTION

MITIGATION

- o e Iiw

|
| “AcTive” !

»| AVOIDANCE |,
—

,

ISK [IMIT
Z‘/}///{//d/‘/////: e

I
ACTIVE AVOIDANCE | EMERGENCY SHUTDOWN
I

= asynchronous
response when
crossing operational
boundaries (danger
levels)

= Fast controlled
shutdown

= mitigation
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=141 The TCV Plasma Control System (PCS)
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ACTUATORS
y

Separation of tokamak

Tokamak

»1  DIAGNOSTICS

dependent and agnostic

layers ¢
. . . ACTUATORS PLASMA AND ACTUATOR
Generlc |mp|ementat|0n INTERFACE STATE RECONSTRUCTION
. RT-OBSERVERS
Flexible framework JE
. TOKAMAK-OEPENDENT INTERFACE LAYER
allowing easy |
maintenance and v
upgrade
| PLASMA STATE
Concepts of integration ' JJ<—> ACTUATOR | | MoNITORING &
d b bili ® CONTROLLERS ManAGER SUPERVISION ]
and portabilit
P y SAMONE
TOKAMAK-AGNOSTIC

REF: [T. Vu et al. IEEE TNS 2021]

Plasma Control System (PCS)

PULSE
SCHEDULE

USER INTERFACE

REF: [F. Felici et al. IAEA 2021]
REF: [C. Galperti et al IAEA TM on Plasma Control Systems 2021]
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Plasma control by deep reinforcement leaming

TCV Vessel cross section
~100 magnetic sensor

measurements
m
Isoflux line
% X-point
in vacuum
Plasma
boundary
Vessel —*
Controller
(10kHz) Axis R, Z
Plasma position
Active
X-point Baffle
- ~. Strike Leas
2 €g
“ss«._ points ‘
\/E / Nehs o
Limiter
a » 16 Poloidal _ Ohmic _ Fast Sead
19 voltage commands field coils coils coil
0 DeepMind REF: J. Degrave, F. Felici et al., Nature, vol. 602, no. 7897, pp. 414-419, Feb. 2022
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Plasma control by deep reinforcement leaming

= TCV Free-boundary simulator

Agent Environment

Observations

[Figure and RL slide material from hereon: courtesy A. Abdolmaleki]

= Agent tries to learn a control policy mapping states
(observations) to actions

= MPO: Actor-Critic RL implementation for continuous-valued
states

= Deep RL: recurrent architecture to efficient model of long-
range dependencies (plasma dynamics)

b‘, Deelend REF: J. Degrave, F. Felici et al., Nature, vol. 602, no. 7897, pp. 414-419, Feb. 2022
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Plasma control by deep reinforcement leaming

= Free-boundary simulator for the Tokamak magnetic

S = TCV Free-boundary simulator
equilibrium

» Solve coupled system of equations:

= Circuit equations for time evolution of currents,
coupled equations for Coils, Passive conductors
(vessel), Plasma

= Grad-Shafranov equation (ideal MHD force balance: 2D
static, elliptic PDE) to determine plasma equilibrium
depending on external currents and internal constraints
(provided)

« Typically, ~hours for simulating a few seconds
discharge (50,000 steps / s) of plasma evolution.

= \What we need to control:

» Total plasma current |, ; Radial position R
» Vertical position Z; Plasma shape (LCFS, etc.)
0 DeepMind REF: J. Degrave, F. Felici et al., Nature, vol. 602, no. 7897, pp. 414-419, Feb. 2022
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£PFL  Plasma control by deep reinforcement leaming

« MPO: Actor-Critic RL implementation for continuous-valued states

« Stable (constrains deviation from the current policy)
« efficiently explores continuous state-action spaces
« Efficient data sampling

* Robust against uncertainties

» Distributed implementation: many actors run in parallel...

« Off-policy: also use data generated using previous policies

A. Pau | RL4AA 2025 | Hamburg, 3@ April. 2025

Learning loop Measurements |
"N
Control C
! ontrol
Leammer —  policy —| |Environment solicy
parameters
Y LE—[
Voltage commands
"]
Replay — @amt —
buffer Targets
|
1
1
B Swiss .
(P:Er?tg? 0 Deelend REF: J. Degrave, F. Felici et al., Nature, 2022

Control policy

Y @
Inputs: m =92, t < 132
Neural net: MLP = 3 x 256

Outputs: a = 19

Actor: learns the control policy o (taking
policy gradients on the Q function learned
by the critic) -> “small” feedforward NN

Critic: learns the Q function from the data
generated by the interaction of the actor(s)
with the environment (estimates expected
cumulative future rewards) -> deep
recurrent NN
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Axis z (m)
X-point z (m)
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Growth rate y (Hz)

@ DeepMind
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Plasma control by deep reinforcement leaming

0.49s 0.50s 0.60 s 0.90s

ﬁ_\@\
SR g

<O
o)

0.254

0

0.5
-0.8

0.2

| I !

0.4 0.6 0.8
Time since breakdown (s)

1.0
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Inside view at 0.6 s

REF: J. Degrave, F. Felici et al., Nature, vol. 602, no. 7897, pp. 414-419, Feb. 2022
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Plasma control by deep reinforcement leaming
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Time since breakdown (s)

REF: J. Degrave, F. Felici et al.,

Time since breakdown (s)
Nature, vol. 602, no. 7897, pp. 414-419, Feb. 2022
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Plasma control by deep reinforcement leaming
@ (®\ r®\\ @ @
TCV#69545 . ” § ) )

\Q}/ Q\j/ \_ / ;@/ Q/
054 = —
N o5~ -

0 —
| | | — — | — |
0.01 0.05 0.10 0.15 0.20
Time since breakdown (s)
@ DeepMind REF: J. Degrave, F. Felici et al., Nature, vol. 602, no. 7897, pp. 414-419, Feb. 2022
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cpEL Plasma trajectories: control objectives & optimization %

TCV ts]
1.5 — . . . . —
11.6
de:_r:‘dc:i?on #68643 ‘; 22

(NO-BAFFLES) ] . . .
§ % 2 11.5 = High-performance Density Limit
= 2 dynamics described through
< LHback MY — 11.4 : . :
o wansition [ e 015 11.8 trajectories in a physics-based

Ll (o] =0.

- o > 1 0.15 |, W3 “state space” [H98y,2-n__... . ]
£ Q =2 #64924 d=0 '
; L T M o950 .
T MARFE onset (@) (BAFFLES) ”m {124
g E S High f . 11
S 8 danger 15 | = Reduced set of variables to
5 csze cootng TS level ] describe the relevant system
B 0.5 i K dynamics... but sometimes the
> ole. ola 1 1'2 1'4 6 0.9 operational space is complex

' ' ' ' ' and high-dimensional (hidden

Ne_crit-norm factor, etc.)

DISRUPTION " Trajectory allows mapping the distance from

M Swiss operational/disruption boundaries to probabilities of
Plasma I .
Center transition to specific states (occurrence of an event)
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Latent variable models for plasma state monitoring
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REF: A. Buerli, A. Pau et al, ArXiV 2025

w K
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e

___f-’”

vy [

N

Input state
reconstruction

& —> Lyse

= Sequence-based model: a variational autoencoder (transformer, GPT-alike

architecture) leveraging multi-task learning.

= Multi-task learning: by learning tasks jointly(supervised and unsupervised),

the model can discover common features or structures across tasks (shared
representation).
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" Discharge plasma state
evolution in time projected on
the learned low-D latent space
representation (zero-centred
and with spherical edges).

®"Smoother trajectories with
movement penalty

"Two main and diverging paths
along which the state can
evolve towards the boundary
condition, which corresponds
to two different disruptions
dynamics at JET

REF: A. Buerli, A. Pau et al, paper sumbitted

95% Confidence Inverval
@& m

HL

RadCollapse

IMP_acc
8 Flat-top start

Y Disruption

Plasma State Monitoring with sequence-based DL
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Plasma State Monitoring with sequence-based DL
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Flat-top start
Disruption EdgeCooling
Disruption ImpAcc

Ramp down start

Ramp down (IPLA < 1MA)
Disruption Undefined

\

REF: A. Buerli, A. Pau et al, paper submitted
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*FL Latentvariable models for disruption monitoring

Sequential VAE with multimodal prior

= Project disruptive boundaries &
physics quantities to inspect

A. Pau | RL4AA 2025 | Hamburg, 3@ April. 2025

connections Swiss Data Science Center
= Project full discharges to track proximity
tO diSI‘UptiOI’l TCV 1e19 movemeTn%\s/pfe%z?Ila?’tent space 1o
. . . . TCV #67343 projection — :
= Future: Investigate identified modes in f— s T e 08
posterior distribution | o 0
S 0.4
= Future: Discretize projections as 6z =2 b [0
sequences of states s B Gisruptivity & distance to atent prior modes
X 0.2
P
: - u\__/’"”\fm 0.25 o.sotirr(\)g(ss) 1.nc3\1.25
o e——

Bl Swiss

E'é"r?{é‘? [Poels et al. WIP]
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COLLABORATION WITH MIT
= Scientific machine learning for building simulators that combine physics + machine learning

= Reinforcement learning to design trajectories and controllers to meet operator specifications that
are robust to physics uncertainty

Trajectory Generation Validation Deployment to
via Policy Rollout Process Tokamak Ops
_ A. Wang, A. Pau, et al. Submitted
Device to Nature Communications
Operator
Library of

| Trajectories

1
|
|
1
1
1
1
1
- ;
1
1
1
1
1
. Constraint |
2 1
Seftings: ., , Trained » .
| a ¥ Simulator 1
' Policy .
1
1
| -
1 .
I
! »
. Trained .
| Policy e
I
1

Data to Improve
Differentiable Simulations

= Trajectory: sequence of states, actions, and rewards that an agent experiences as it
interacts with the environment.

= Neural State Space Models (NSSM) to learn the temporal dynamics of some observed
guantities in response to actions (physics structure and data-driven models).

30



=141 Plasma trajectories optimization with physics constraints

Predictions and Constraints

COLLABORATION WITH MIT

Reward function , R
Actions S

Wtot

== Training Environment
— 82878

r(x(r),a(r)) = _Cn'mer — ?FMGt(IL_ Cfpfp(fl
Penalty for time Penalty for current and energy
Msa fi Mhard
1 Z f.‘mﬂ.’:i'i(X(f]) — Z C.&ardhi(x(t))
i=1 =1
Soft chanc;mnstraints Hard chanc-;cﬂnstra_ints

0‘09.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65

@minor

Reward function parameters
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Category Parameter Value
Hard Limits /% 1.0
Logs 0.5
fow 0.8
_ By 1.75
Soft Limits
Yoer 0.75
195 0.313
C”'me 50
c, 1.0
) Parameters  cw 1.0
B Swiss 1.0 103 45 50
Plasma Csoft X Time (8)
Center Chard 5.0x10% T T et
' ' Time (s) '
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Plasma trajectories optimization with physics constraints

A) Data Distribution with Few Shots at High B) Training a NSSM with Embedded C) Robust Trajectory Optimization +
Performance Physics Structure Deployment to TCV
O VS I, (100KA) at thegin
25— ‘Experimental T T T
yCampaign®  Training Shots
9 o} e  Fine-Tuning Shots
20H O Target Scenarios
l Pre-shot
™ Programming
]
1.5
=
= S
|
—_—
1.0 del
Experimental Modef
- Data Predictions
0.5 . '
00% 45 20 25 30 35 40
I (100kA)
D) Experimental Campaign Results E) Example Baseline vs. Optimized Shot
Wior at tierm Normalized to Value at thegin Baseline #81101 vs. Optimized #82876
v ‘ . ; . e ; ‘ d .
0.4} ] —— TCV #81101 Wy
- i 12 —— TCV #82876 Wy

o
é 031 L] ° 10

IS Debug  Unexpected 170kA il

PR x 8
S Unoptimized Legacy Control Sut::gzges Extrapolation i
5 0.2  Baseline Issue Error Test 1 s 6

S [y (Required
3‘_:: Accounting for 4
Sos e

° *? ? * L ° 2
00" g1101 ‘81102 81635 81741 81745 81751 81830 82875 82876 82877 82878 0600 005 010 015 020 028
I, at tierm Normalized to Value at tyegin Time from fuegin [5] y
0.7} * e 140 ’
06} @ 120 0.8
— [

Sos) ® 100 —
8 = 06
o4 =
= g =

E 03l -2 60 04 8

g 0.3 S
= 0.2 hd L Y 40
= U [ ]

[} ° 0.2
0.1 20
0.0 ‘ . : ‘ - ; 0 ‘ . 1 100
~ B1101 81102 81635 81741 81745 81751 81830 82875 82876 82877 82878 000 005 040 015 020 025

TCV Shot Number

Initial trial with Proximal Policy
Optimization (PPO), before moving
to an “Evolutionary Strategies”
(OpenAl-ES), an algorithm designed
for policy optimization.

ES approaches provide an efficient
framework for problems with long
time horizons and actions that have
long-lasting effects.
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=PFL - Summary and outiook

THE FUTURE: DIGITAL TWINS

= Al & ML bridging the gaps between
modeling, simulation and experiments:

NVIDIA Omniverse

 Integration of Al technologies to enhance interpretation capabilities,
exploration of alternative ideas in virtual simulated environments to enable
scientific discovery.

- Reinforcement learning can enable advanced plasma control, allowing
the design of optimal control policies in complex environments leveraging

W Swiss modeling, simulation and experimental data

Plasma
Center
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=PFL Al & ML challenges in fusion

REF: D. Smith, IAEA Al4Atoms, 2021

= 1. Data ecosystems and cross-device datasets =5. Surrogate models for simulations
= Challenges: facility-specific data access, format, and = Challenges: robustness, convergence
schema; database curation; unsupervised or semi- = MFE area: plasma-surface interactions, turbulence
. supervised learning for automated labelling and transport, RF, stellarator configuration, multi-scale
S » MFE area: disruptions, ELMSs, instabilities calculations
t =2. Extrapolation to new devices and transfer =6. Physics-based models
= learning = Challenges: strategies to blend physics and ML
‘; = Challenges: strategies for transfer or extrapolation; models; Bayesian inference
3 institutional policies for operational certification = MFE area: ELMs and stability boundaries
cIEs = MFE area: extrapolation to ITER; transfer learningtoa =7. Big data
0 new device = Challenges: data product pipeline, automated
< =3. Real-time control and prediction analysis, data mirroring and provenance
§; » Challenges: streaming data, advanced compute = MFE area: 2 PB/day at ITER, high bandwidth
T hardware (FPGA, ASICs) diagnostics
g = MFE area: disruption mitigation, stability boundaries »8. Plant operation
< ™4. Near-real-time analysis = Challenges: real-time monitoring and information
= Challenges: multi-channel, high-bandwidth data; synthesis
automated analysis; advanced compute hardware = MFE area: thermal power generation, nuclear
= MPFE area: fast cameras, multi-channel fluctuation environment, cryogenics, superconducting magnets,
diagnostics, magnetics vacuum systems, and diagnostic instrumentation
. g?’;ig';a International Atomic Energy Agency (IAEA) Consultancy Meeting on Artificial Intelligence for Nuclear Fusion Research
Center
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