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Disclaimer 🚨

This lecture:

§ Is meant for people that are new to RL.
§ Will introduce you to the foundational concepts and ideas used in RL.
§ Will show you the mathematical framework that RL is based on.

§ it’s a bit formula-heavy but bear with me 🧠!
§ Will *briefly* introduce deep RL (modern RL).
§ Will not teach you how to be a super deep RL coder (that’s at least another lecture 😁).
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If you reuse any of the material, please cite it 🙏
The slides and code are available under GPLv3
DOI:10.5281/zenodo.12649046

https://zenodo.org/records/12649046
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1. High level overview of RL
2. Trial-and-error concepts

§ Agent, reward, and goal
§ Reward is enough
§ Trade-off between exploitation and 

exploration
§ Sequential decision making

3. Optimal control concepts
§ Markov decision processes (MDPs)
§ The Markov property
§ Partially observable Markov decision 

processes (POMDPs)
§ Reward and return
§ Policy
§ Value function
§ The Bellman equation

4. Gridworld toy problem
§ Policy evaluation (exact)
§ Policy evaluation (iterative)
§ The reinforcement learning goal
§ How to get the best policy?
§ Bellman optimality equations
§ Policy improvement
§ About greedy actions

4. Monte Carlo learning
5. Temporal difference learning
6. Off-policy learning
7. Deep reinforcement learning

~5 min water break 

Contents 
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~30 min

~25 min coffee break

 

~30 min

Let’s keep the 
questions for the 

breaks!
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Segmentation of data
computer learns without prior information about the data

Real-time decisions
computer learns through trial and error

Classification, prediction, forecasting
computer learns by example

SUPERVISED 
LEARNING

UNSUPERVISED 
LEARNING

REINFORCEMENT 
LEARNING

MACHINE 
LEARNING

Spam detection
Weather forecasting
Housing prices prediction
Stock market prediction

Medical diagnosis
Fraud (anomaly) detection
Market segmentation
Pattern recognition

Self-driving cars
Make financial trades
Gaming (AlphaGo)
Robotics manipulation
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Reinforcement learning  
More than machine learning

BEHAVIOUR
LEARNING

Psychology (classical conditioning)
Neuroscience (reward system)
Economics (game theory)
Mathematics (operations research)
Engineering (optimal control, planning)

5



Andrea Santamaria Garcia - Introduction to Reinforcement Learning 2025

Deep reinforcement learning
Deep reinforcement learning opened the door to high dimensional environments

https://www.deepmind.com/publications/playi
ng-atari-with-deep-reinforcement-learning

https://arxiv.org/abs/1707.02286
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https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://www.deepmind.com/publications/playing-atari-with-deep-reinforcement-learning
https://arxiv.org/abs/1707.02286


Andrea Santamaria Garcia - Introduction to Reinforcement Learning 2025

Reinforcement learning  

7

“Reinforcement learning is simultaneously a 
problem, a class of solution methods that work well 
on the problem, and the field that studies this 
problem and its solution methods” (Sutton & Barto)

What we understand today as RL (established 
in the 1980s) inherits concepts from:

o trial-and-error learning

o optimal control

o temporal difference learning
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The pillars of reinforcement learning

Provides the behavioural basis

o Learning emerges through repeated 
interaction, reward feedback, and 
adaptation.

o Exploration vs exploitation 
dichotomy inherent in trial and error.

o Inefficient in biological systems! 
Requires many attempts.

o Pure trial-and-error is just random 
learning.

o Computes best strategy and follows 
it efficiently.

o Relies on model to guide choices 
instead of random attempts.

Provides the mathematical 
framework

o Markov decision processes (MDPs), 
Markov property, Bellman 
equation, partially observable MDPs 
(POMDPs), value function, policy 
function, dynamic programming.

Provides scalability and 
adaptability for real-world 

problems

o Enables prediction and learning from 
partial experiences.

o Bootstraps rewards backward through 
actual experience à provides “foresight” 
for delayed rewards.

o Efficient sample-based 
predictions.

o Online learning from experience 
without a model.

Trial-and-error learning

Optimal control

Temporal difference

No deep RL just yet!
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Trial-and-error concepts
The RL problem: agent, goal, and reward

An agent must learn through trial-and-error 
interactions with a dynamic environment

Reward shaping is 
non-trivial

Agent
executes action 

à receives observation 
à receives scalar 

reward

Reward
scalar feedback signal 
𝒓𝒕	 that indicates how 
well the agent is doing 

at step 𝒕

Goal
maximization of 

cumulative reward 
through selected 

actions

🤖 🍰🍰🍰 🍰🍰🍰🍰🍰
🍰🍰🍰🍰🍰
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Trial-and-error concepts

Reward

Agent

Goal

Actions
§ Bark
§ Jump
§ Bite
§ Sit

Environment

Observation

The RL problem: agent, goal, and reward

🐕

🦴🦴🦴🦴🦴🦴

🦴
🌳🌳🌳

💁

⛅

🐦⬛
Action

10

perception

free
-will

motivation
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Trial-and-error concepts
The RL problem: agent, goal, and reward

Ø Some people argue that additional mechanisms, such as intrinsic 
motivation, curiosity, or structured learning paradigms, might be 
necessary to replicate the full spectrum of human intelligence.

Ø Nevertheless, the single objective of reward maximisation has 
proven to be extremely powerful.

"Reward is enough" by Silver et al. (2021)
Proposes that the concept of reward maximization is a sufficient framework to 
achieve artificial general intelligence (AGI). 

The authors argue that complex intelligent behaviours (such as perception, 
language, and social intelligence) can emerge from agents solely driven by the 
goal of maximizing cumulative reward in their environments.

🍰
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“Scalar reward is not 
enough”: a response to 
Silver et al. (2021)

https://www.sciencedirect.com/science/article/pii/S0004370221000862
https://arxiv.org/abs/2112.15422
https://arxiv.org/abs/2112.15422
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Trial-and-error concepts
Trade-off between exploitation and exploration

Ø Actions may have long-term 
consequences

Ø Reward might be delayed 
    (does not happen immediately)

Should the agent 
sacrifice immediate 
reward to gain more 
long term reward?

Should I order the dish I 
know I like, or should I try 

something new that I 
might not like?🤔

🍕 

🍲 🥙
or

12
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Trial-and-error concepts
Trade-off between exploitation and exploration

The agent needs to:

ü Exploit what it has already experienced in order to obtain reward now.

ü Explore  the environment to select better actions in the future by     
  sacrificing known reward now.

…and both cannot be pursued exclusively without failing at the task

Too much exploitation
the agent might converge prematurely 

to a suboptimal strategy

Too much exploration
the agent spends too much time 

testing bad actions, delaying 
convergence to an optimal strategy

13
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Trial-and-error concepts
Trade-off between exploitation and exploration

Ø All RL algorithms are designed to deal with this 
trade-off by assessing the value of actions 
and estimating future reward.

Ø The right balance depends on the problem, 
environment, and computational constraints.

Finite vs. infinite horizons
 if the learning time is limited, more exploitation is needed. 

In long-term settings, more exploration is feasible.

Deterministic vs. stochastic environments
in highly stochastic settings, excessive exploration may be 

wasteful, while in deterministic ones, exploration can be 
minimized once a good policy is found.

Examples of different strategies:
Ø explore early and exploit later 

using best-known action as 
learning progresses.

Ø better actions (with higher value) 
have a higher probability, but 
worse actions can still happen.

Ø choose actions with high 
uncertainty (under tested 
strategies are used until better 
understood).

🗺 🧭

🔍
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Trial-and-error concepts
How to formalise sequential decision making?

The famous RL loop

A sequence of tic-tac-toe moves

exploratory 
move

Images from Sutton & Barto
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Optimal control concepts 💡
Markov Decision Processes (MDPs)
A mathematical framework for modelling stochastic decision making

A Markov Decision Process is a 5-tuple: (𝒮,𝒜,𝒫,ℛ, 𝛾)

§ Discrete or continuous
Countable or real-valued 𝒮,𝒜

§ Finite or infinite 
Bounded or unbounded 𝒮,𝒜

§ Deterministic or stochastic 𝒮, ℛ
§ Episodic or continuing

M
D

P 
ex

am
pl

e 
fro

m
 W

ik
ip

ed
ia

𝒮
𝒜
ℛ

state space (all valid states)

action space (all valid actions)

reward function

𝒫

𝛾

transition probability function

discount factor

𝒫""#$ = ℙ[𝑠#|𝑠, 𝑎]
Probability of transitioning to state 𝑠′	after 
taking action 𝑎	 while being in state 𝑠

𝑟 = ℛ(s, 𝑎, s′) = ℛ""#$

𝒜 = 𝑎!, 𝑎" 	 ; 	𝒮 = 𝑠!, 𝑠", 𝑠# 	 ; 	 ℛ$!$"
%" =	+5	 ; 	ℛ$#$"

%! = −1

𝒫!!"
#! =

𝒫$$ 𝒫$% 𝒫$&
𝒫%$ 𝒫%% 𝒫%&
𝒫&$ 𝒫&% 𝒫&&

 =
0.5 0 0.5
0.7 0.1 0.2
0.4 0 0.6

16

Immediate reward
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Optimal control concepts 💡
The Markov property

§ The Markov property states that the system’s next state is conditionally independent 
of all previous states given the current state, or in other words, that the future is 
independent of the past, given the present.

§ This property allows to discard the history of the process, making it memoryless.

What makes MDPs computationally tractable is the assumption of 
the Markov property

à offers simplifications that considerably alleviates computational demands

17

§ We can specify a set of conditional probabilities 𝒫$$&%  of ending in state 𝑠′ after taking action 
𝑎 while being in state 𝑠:

which are the entries 𝒫$$&% 	of the state transition probability function 𝒫

𝒫 = ℙ[	𝑠012, 𝑟0|𝑠0, 𝑎0, 𝑠032, 𝑎032, … , 𝑎4	, 𝑠4] 	= ℙ[𝑠012, 𝑟0|𝑠0, 𝑎0]
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Optimal control concepts 💡
The Markov property

If we can observe the full state, yes.

Is the Markov property a reasonable assumption?

Fully observable environments
The agent directly observes the true 
state of the environment, which 
includes everything relevant

observation

state of the 
agent (belief)

true state of the 
environment

:

In real-world environments the agent receives partial observations
Partially observable environments
The agent receives partial observations 
and has to create its own state 
representation

𝒪0 = 𝒮05 = 𝒮06

𝒪0 ≠ 𝒮05 ≠ 𝒮06

Example: autonomous driving

𝒮06	: we know all cars exact 
positions, road friction, 
weather conditions, etc.

𝒪0: pixels from cameras, 
GPS signal, lidar?
what the agent can “sense”

𝒮05: estimated positions 
and speeds based on past 
observations
what the agent ”believes” the 
environment is

partial, noisy, filtered

18
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Optimal control concepts 💡
Partially observable Markov decision processes (POMDP)

A POMDP is a 7-tuple: (𝒮,𝒜, 𝒯, ℛ, Ω, 𝒪, 𝛾)

𝒮
𝒜

true state space (all valid states)

action space (all valid actions)

𝛾

transition probability function

discount factor

𝒯(𝑠0|𝑠, 𝑎)
ℛ(𝑠, 𝑎) reward function

Ω observation space (all valid observations)

𝒪(𝑜|𝑠′) observation probability function

In a POMDP the observation 𝑜 may not uniquely identify the true state 𝑠, so the agent must 
maintain a belief over possible states and update it over time (Bayes’ rule)

Example: Atari pong

𝒮06	: we know ball and paddle 
positions and velocities

𝒪0: one image frame
can’t infer velocity

𝒮05: estimated positions 
and speeds based on few 
last frames (frame stacking)
velocity inferred from pixel change

19
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Optimal control concepts 💡
Partially observable Markov decision processes (POMDP)

What is the consequence of maintaining a belief?

POMDPs are not memoryless like MDPS
The uncertainty introduced by partial observability is dealt with by 

keeping some past information

Stacking recent 
observations to 

approximate 
motion

Recurrent 
neural 

networks

Memory 
augmented 

(transformers)

Probabilistic 
reasoning

All real-world problems are POMDPs

They don’t fulfill the Markov property, which means they are computationally intractable

no exact solution

20
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Optimal control concepts 💡
Reward distribution

In the previous slide we talked about the reward as deterministic but it is 
generally stochastic in real-world environments

§ The same action in the same state can lead to different rewards due to hidden variables
§ The received reward is not fixed but rather sampled from a distribution

ℛ1
2 = ℙ[𝑟|𝑠, 𝑎] Probability of receiving a reward 𝑟 given 𝑠 and 𝑎

Reward distribution or model

The reward distribution is often unknown, so we can:

• assume a distribution shape, collect samples, and estimate 
distribution parameters or

• model the reward distribution explicitly
(model-based RL, Bayesian RL)

ℛ"$

ℛ = cost metric + environmental noise 

𝜇 𝑠, 𝑎 = 𝔼[𝑟|𝑠, 𝑎]
true expected reward

what we model

𝜇 𝑠, 𝑎 + 𝜀
noisy sample

21
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Optimal control concepts 💡
Return

The return is the total cumulated reward from a given step onward

Finite-horizon return Infinite-horizon discounted return

𝒢0(𝜏) = 5
?@4

A30

𝑟01? 𝒢0(𝜏) = 5
?@4

B

𝛾?	𝑟01?

§ for a finite number of steps 𝑇
§ for a given trajectory 𝜏 = (𝑠!, 𝑎!, 𝑠", 𝑎", … )
§ from timestep 𝑡

To ensure convergence when 𝑇 → ∞ the discount 
factor is introduced 𝛾 ∈ 0,1

Intuition: 🍰 now is better than 🍰  later

22

🍰🍰🍰🍰🍰
🍰🍰🍰🍰
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Optimal control concepts 💡
Policy

The policy function is:
§ a map from state to action
§ completely defines how the agent will behave
§ a distribution over actions given a certain state

Deterministic: 𝜋 𝑠 = 𝑎

𝜋 ∶ 𝒮 → 𝒜

𝜋 𝑎 𝑠 = ℙ[𝑎|𝑠]
Probability of taking a specific 
action by being in a specific state

At every time step 𝑡:
à The agent is in state 𝑠'
à The agent samples an action 𝑎'	~	𝜋 𝑎 𝑠
à The environment samples:

à Next state 𝑠'("	
à Reward 𝑟'	

Stochastic:

Sample randomly from 
a Gaussian dist. or 
from model

Given by your simulation, 
experiment, or model

23
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Optimal control concepts 💡
Value function

The value function is:
§ an estimation of expected future reward, gives “value” to an action.
§ used to choose between states depending on how much reward we expect to get.
§ depends on the agent’s behaviour (policy à action).
§ a way to compare policies.

𝒱P 𝑠 = 𝔼P 𝒢0	 𝒮0 = 𝑠]
State-value function Expected return starting from state 𝑠	and 

following policy 𝜋	(evaluates the policy)

given policy
Action-value function

𝒬P	 𝑠, 𝑎 = 𝔼P 𝒢0	 𝒮0 = 𝑠,	𝒜0= 𝑎]

Expected return starting from state 𝑠, 
taking action 𝑎, and following policy 𝜋

”Q
 fu

nc
tio

n”

where the return 
distribution is centered

𝒢%

24
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Optimal control concepts 💡
The Bellman equation

𝒱P 𝑠 = 𝔼 𝒢0	 𝒮0 = 𝑠]
= 𝔼 𝑟0	+ 𝛾	𝑟012 + 𝛾Q	𝑟01Q… 	𝒮0 = 𝑠]
= 𝔼 𝑟0	+ 𝛾	(𝑟012 + 𝛾	𝑟01Q…) 	𝒮0 = 𝑠]
= 𝔼 𝑟0 + 𝛾	𝒢012 	𝒮0 = 𝑠] 𝒱P 𝑠 = 𝔼[𝑟	+ 𝛾𝒱P(𝑠′)]

𝔼 f = 𝔼(𝔼(f))

Decomposition of expected return into immediate reward + expected future return
𝒢0 = 𝑟0 + 𝛾𝒢012

Recursive structure where we can define the value of a state in terms of its successor states
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Optimal control concepts 💡
The expanded Bellman equation

In stochastic environments we need to take the expected value over all 
possibilities (actions, states):

𝔼5~P,	R3~𝒫[𝑟	+ 𝛾	𝒱(𝑠′)]

𝒱P 𝑠 = 5
5∈𝒜

𝜋 (𝑎|𝑠)5
RS∈𝒮

𝒫R,RS5 ℛR5 + 𝛾𝒱P 𝑠′

We can expand the Bellman equation to explicitly account for it through the 
law of total expectation:

discrete case

26
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Optimal control concepts 💡
The expanded Bellman equation

𝒱P 𝑠 = 5
5∈𝒜

𝜋 (𝑎|𝑠)5
RS∈𝒮

𝒫R,RS5 ℛR5 + 𝛾𝒱P 𝑠′

How to solve it?
Directly
System of 

𝒮	simultaneous linear 
equations with 𝒮 

unknowns

Iteration
Dynamic 

programming

Sampling
Monte Carlo 

methods

Approximation
Temporal-difference 

learning

Computational complexity

27
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Small 5 min 
break!

Richard Bellman
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Gridworld toy problem

Let’s use all the optimal control 
concepts we have learned and 
solve the Bellman equation 

directly and exactly

We will need:
§ A fully observable environment 

(MDP) à Markovian
§ A small state space and action 

spaces 𝒮,𝒜
§ Know all transition probabilities 𝒫

Welcome to gridworld!

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)

𝒫","#$ = 1 Deterministic environment

👩🍳
29
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Our goal: get to state 15 (out of the maze)
Agent’s goal: cumulate reward

⭐

🤖

Reward design: why negative?

ℛ

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)
𝒫","#$ = 1 Deterministic environment

Gridworld toy problem

30
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We need a policy: what is the simplest?

𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 	𝒮0 = 0.25

Let’s see the random policy in action

🧐

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)
𝒫","#$ = 1 Deterministic environment

ℛ = −1	∀𝑠, 𝑠 ≠ 15
1	𝑠 = 15

Gridworld toy problem
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Let’s solve our set of simultaneous equations

𝒱P 𝑠 = 5
5∈𝒜

𝜋 (𝑎|𝑠)5
RS∈𝒮

𝒫R,RS5 ℛR5 + 𝒱P 𝑠′

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)
𝒫","#$ = 1 Deterministic environment

ℛ = −1	∀𝑠, 𝑠 ≠ 15
1	𝑠 = 15

𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 	𝒮% = 0.25

Value of random policy

We can see this way of solving it won’t scale with 
the number of states

Gridworld toy problem
B

ru
te

 fo
rc

e
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The Bellman equation becomes an update rule:

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)
𝒫","#$ = 1 Deterministic environment

ℛ = −1	∀𝑠, 𝑠 ≠ 15
1	𝑠 = 15

𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 	𝒮% = 0.25

Value of random policy

𝒱P 𝑠 ← 5
5∈𝒜

𝜋 (𝑎|𝑠)5
RS∈𝒮

𝒫R,RS5 ℛR5 + 𝒱P 𝑠′

Gridworld toy problem

§ Initialise the value of all states to 0
§ For each state:

§ Use 𝒫$,$&%  to figure out the next possible states and 
the associated reward.

§ Calculate your value estimate for that state with the 
Bellman update rule: 

Average of those rewards from possible future states weighted 
by how likely each action is.

§ Repeat loop for each state until values stop changing.

Computationally less expensive, but also won’t scale

D
yn

am
ic

 p
ro

gr
am

m
in

g
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Policy evaluation with value iteration (dynamic programming)

Gridworld toy problem

⭐

34
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What have we learned?
§ MDPs formalise control problems by capturing the dynamics (transitions) 

and objectives (rewards).
§ The value function tells us how good it is to be in each state and 

evaluate a policy.
§ The policy represents the control strategy.
§ The Bellman equation breaks down the global optimisation problem into 

local, recursive subproblems.
§ Turns a long-term planning problem into a set of local updates.
§ Enables both exact and approximate solutions.
§ Enables the computation of value functions and provides 

mathematical foundation to find the optimal policy.

But the agent has not learned so far! we have only evaluated the policy
Learning means updating your policy, your control strategy🤖

?

35
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The reinforcement learning goal

Goal
maximization of 

cumulative reward 
through selected 

actions

🍰🍰🍰🍰🍰🍰🍰
🍰🍰🍰🍰🍰

𝐽 𝜋 = 𝔼F[𝒢G]

𝜋∗ = argmax 𝐽(𝜋)

The expected return is:

The optimisation problem can be expressed as:

where 𝜋∗ is the optimal policy 

The optimal policy will tell you the optimal action 
to take in each state 

à the control problem is completely solved

Starting from time step 𝑡 averaged over all 
possible trajectories induced by policy 𝜋

𝜋

36
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The reinforcement learning goal
Ideal setting

State fully observable

§ MDP
§ Model known
§ Value function exact
§ Optimal policy computable

Real world
State partially observable

§ POMDP
§ Model unknown or learned
§ Value function approximated
§ Policy approximated

We can completely solve the control 
problem and find the optimal policy 𝝅∗ 

We just want good-enough policies that are 
robust, generalizable, sample-efficient, and safe

vs

37
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But how can we get the best policy?
For any MDP:

§ There exists an optimal policy 𝝅∗	that is better or equal to all other policies 𝜋∗ ≥ 𝜋 ∀𝜋
§ All optimal policies achieve the optimal value function 𝒱∗	and 𝒬∗

So…do I have to calculate the value of every 
policy and compare them?

|𝒜| |𝒮|	deterministic policies in an MDP
4"" ≈ 4 million policies for simple gridworld example

😅

38
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Bellman optimality equations

§ These equations define the value of a state under the optimal policy 𝝅∗ the one that gives 
most total reward starting from any state.

§ They tell you how to act if you want to get the best possible future.

𝒱∗ 𝑠 = max
$

M
"#∈𝒮

𝒫","#$ [ℛ"$ + 𝛾𝒱∗ 𝑠′ ]
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𝒬∗ 𝑠, 𝑎 = M
"#∈𝒮

𝒫","#$ [ℛ"$ + 𝛾	max$ 	𝒬∗ 𝑠#, 𝑎′ ]

All optimal policies achieve the optimal value function:

𝒱P∗ 𝑠 = max𝒱P(𝑠) ∀	𝑠𝜖𝒮

𝒬P∗ 𝑠 = max𝒬P(𝑠) ∀	𝑠𝜖𝒮, 𝑎𝜖𝒜

Maximum value over 
every next possible 

state and action

We can use this!

§ Want to know learn a policy
§ Discrete action spaces (can 

enumerate actions
§ How good is it to take an action 

from that state

§ Policy is fixed
§ Continuous action spaces
§ How good is it to be in a state
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Policy improvement

𝝅	′ 𝒔 = arg	max
5

𝒬P(𝑠, 𝑎)

§ If the action has a higher value, the policy is better
§ 𝒱∗	is the unique solution to the Bellman optimality eq.
§ If this greedy operation does not change 𝒱, then it 

converged to the optimal policy because it satisfies the 
Bellman optimality eq.

𝜋2 → 𝒱P2 → 𝜋Q → ⋯ → 𝜋∗
evaluation

improvement

Images from http://incompleteideas.net/book/ebook/node46.html

§ Let’s consider a non-optimal policy 𝝅 and its 
value function 𝓥𝝅	

§ We can select an action that is greedy with 
respect to it to improve the policy

next policy

40

= arg	max
5

ℛR + 𝛾 5
R3∈𝒮

𝒫R,R3 𝒱P(𝑠′)

Greedy action
We have it from our 

policy evaluation

http://incompleteideas.net/book/ebook/node46.html
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Policy improvement

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)
𝒫","#$ = 1 Deterministic environment

ℛ = −1	∀𝑠, 𝑠 ≠ 15
1	𝑠 = 15

𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 	𝒮% = 0.25

Gridworld toy problem

§ Calculate the value for your current policy with value 
iteration (what we did before).

§ For each state:
§ Look at the next possible states and their value.
§ Choose the action that will give you the maximum 

value and save it in an array.
§ Repeat loop for each state until actions stop changing.

D
yn

am
ic

 p
ro

gr
am

m
in

g

“one-step lookahead”

🥳

↓

↓

↓

→→

→

↓

↓

↓
↓

→↓

𝝅∗ 𝒔 = arg	max
$

ℛ" + 𝛾 M
""∈𝒮

𝒫","" 𝒱∗(𝑠′) = arg	max	𝒬∗
$

𝝅∗
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Takes one iteration in this case

{0: 'right', 1: 'down', 3: 'down', 4: 'right', 5: 'right', 6: 'down', 7: 'left', 
8: 'up', 10: 'down', 12: 'up', 14: 'right', 15: 0.0}
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Policy improvement

𝒮 = 0, 1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15
𝒜 = (↑, ↓,←,→)
𝒫","#$ = 1 Deterministic environment

ℛ = −1	∀𝑠, 𝑠 ≠ 15
1	𝑠 = 15

𝜋 𝑎 𝑠 = ℙ ↑, ↓,←,→ 	𝒮% = 0.25

Gridworld toy problem

“one-step lookahead”

🥳

↓

↓

↓

→→

→

↓

↓

↓
↓

→↓

𝝅∗ 𝒔 = argmax
$

ℛ" + 𝛾 M
""∈𝒮

𝒫","" 𝒱∗(𝑠′) = arg	max	𝒬∗
$

𝝅∗
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Takes one iteration in this case

{0: 'right', 1: 'down', 3: 'down', 4: 'right', 5: 'right', 6: 'down', 7: 'left', 
8: 'up', 10: 'down', 12: 'up', 14: 'right', 15: 0.0}

𝓠 ↑ ↓ ← →
𝑠! 𝓠(𝑠! ↑) 𝓠(𝑠!, ↓) 𝓠(𝑠!, ←) 𝓠(𝑠!, →)

𝑠" 𝓠(𝑠", ↑) 𝓠(𝑠", ↓) 𝓠(𝑠", ←) 𝓠(𝑠", →)

⋮
𝑠". 𝓠(𝑠"., ↑) 𝓠(𝑠"., ↓) 𝓠(𝑠"., ←) 𝓠(𝑠"., →)
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About greedy actions 🚨

In partially observable environments we have estimations of the values of the actions:

Example of value estimation: sample-average method

𝒬%(𝑎) ≐
sum	of	rewards	when	𝑎	taken	prior	to	𝑡
number	of	times	𝑎	taken	prior	to	𝑡 lim

%→+
𝒬% 𝑎 = 𝑞∗(𝑎)

43

Cool. So, if the value function gives “value” to an action…we just keeping choosing the 
action with more value every time! problem solved.

Well, this only works if the environment is fully observable, and we know the model.

👧
👱

:
:

We want |𝓠(𝒂) − 𝒒∗(𝒂)| to be 
minimal

§ 𝒬% 𝑠, 𝑎 	à estimation
§ 𝑞%∗ 𝑠, 𝑎 	à exact
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About greedy actions 🚨

Does greedy action work? à it will depend on the uncertainties (noise)

𝒢%

𝑞∗ 𝑠, 𝑎 𝑞∗ 𝑠, 𝑎

If 𝜎 is large (noisy reward) you will 
need more exploration

If 𝜎 = 0 you will know the value 
of each action after trying it once

𝒬P 𝑠, 𝑎 = 𝔼P 𝒢0	 𝑠, 𝑎]

Greedy action: 𝑎% ≐ arg	max
$

𝒬%	(𝑠, 𝑎) select action with most value à pure exploitation

𝒢%

ℛ = cost metric + 
environmental noise 

𝜇 𝑠, 𝑎 + 𝜀
noisy sample

𝜇 𝑠, 𝑎 = 𝔼[𝑟|𝑠, 𝑎]
true expected reward

44

Near-greedy action: small probability 𝜀	to select randomly from all actions à ensures convergence
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Transitioning to modern RL

45

Ideal setting
State fully observable

§ MDP (finite, discrete)
§ Model known
§ Value function exact
§ Optimal policy computable

Real world
State partially observable

§ POMDP
§ Model unknown or learned
§ Value function approximated
§ Policy approximated 𝜋 ≈ 𝜋∗

vs

Classical dynamic programming Modern RL (model free!)

§ One sample does not return the true expected 
value (noisy reward).

§ The same action does not always lead to the 
same next state.

§ We don’t know the true state (only observed).

§ Bellman equations + greedy action.
§ Policy evaluation, policy 

improvement, value iteration.
§ Non-tractable for large state and 

action spaces.
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Monte Carlo learning

46

The experience is organised in episodes:

𝑠4, 𝑎4, 𝑟2, 𝑠2, 𝑎2, 𝑟Q, … , 𝑠A32, 𝑎A32, 𝑟A…

𝑠4, 𝑎4, 𝑟2, 𝑠2, 𝑎2, 𝑟Q, … , 𝑠A32, 𝑎A32, 𝑟A
Episode 1

Episode MUnder policy 𝜋

Value estimation 𝓥𝝅(𝐬)
§ Loop through each episode to see when the 

state 𝑠 was visited.
§ Compute the return starting from 𝑠 each 

time you encounter 𝑠 (or only the first time).
§ Average the returns to estimate 𝒱- s .

§ We have access to a black box 
model that we query (simulation 
or real-world).

§ We get samples of trajectories.
§ We don’t know 𝒫.

lim
%→+

𝒱% 𝑠 = 𝑣∗(𝑠)

𝒱 𝑠 ≈
1

𝑁(𝑠)
M
./0

1(")

𝒢%
(.) 𝑁 = # of times 𝑠 was 

visited across episodes
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Monte Carlo learning

47

§ Very simple and intuitive
§ You only need experience, not the 

environment dynamics 𝒫
§ Key role in modern RL

§ Requires full episodes (slow learning, 
expensive simulation or experiment)

§ High variance (noisy, uncorrelated future)
§ Sample inefficient (some states never get 

updated, depends on exploration 🚨)

MC estimation for 𝑠 = 0	in gridworld toy problem
The exact value is 154, not bad!

Use in value estimation and policy 
improvement (“learning”):

§ In dynamic programming we use the 
Bellman equation as an update rule to 
estimate the value function à needs 𝒫

§ With Monte Carlo we can estimate the 
value function with full episodes 
à no need for 𝒫
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Temporal difference learning

48

How to compute the averages of action-value methods with constant memory and 
constant computation step, i.e., without storing and averaging a lot of data in tables?

Making long-term predictions is exponentially complex, memory scales with the 
number of steps of the prediction

Instead of:
§ computing expected values over all possible next states, which requires 𝒫	(full Bellman 

backup) or
§ waiting for complete episodes to compute the full return 𝒢 (MC learning)

we can simply sample the next state 𝑠′ and reward from the unknown 𝒫	(one step lookahead) 
and already estimate 𝒱(𝑠) by bootstrapping from a guess of the value of the next state 𝒱(𝑠′).

à We update the value based on a single transition instead of the full distribution 
(DP) and without waiting (MC).

à We do not compute an expectation! But with enough samples it will converge to it.
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Temporal difference learning

49

Target = 𝑟	+ 𝛾	𝒱(𝑠′) Bootstrapped sampled-based estimation 
of the expected return (one step)

It’s the value we want our 
current 𝒱 to move toward

𝒱 𝑠  and the target are “guesses” à TD learning is a guess from a guess!

No expectation, one sample only

New estimate  ß Old estimate + Step size Target - Old estimate

𝒱 𝑠 ← 𝒱 𝑠 + α[𝑟 + 𝛾𝒱 𝑠0 − 𝒱 𝑠 ]

Temporal difference error

§ We can update the value function after each 
step à great for continuing tasks

§ Much more sample efficient than MC
§ Does not need to know 𝒫
§ Foundational in modern RL

§ Bootstrapping bias
§ Can be unstable when paired with function 

approximation
§ Requires access to the environment (might be 

expensive or unsafe)
§ Does not give returns
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Off-policy learning

50

Exploration vs exploitation dilemma appears again:
We want to learn the optimal behaviour and for that we need to behave non-optimally 
to explore all state-action pairs.

Target policy 𝝅(𝒂|𝒔)
Policy being learned 𝜋 ≈ 𝜋∗

Behaviour policy 𝒃(𝒂|𝒔)
Policy to generate behaviour

Exploration (e.g. epsilon-greedy, 
soft policy)

Exploitation (e.g. greedy)

Off-policy learning decouples data collection from policy learning:

🤖

𝒬 𝑠, 𝑎 ← 𝒬 𝑠, 𝑎 + α[𝑟 + 𝛾max𝒬 𝑠′, 𝑎 − 𝒬 𝑠, 𝑎 ]

Act under 𝑏 𝑎 𝑠 , update with 𝜋(𝑎|𝑠) Target policy 𝜋(𝑎|𝑠)

Example: Q-learning
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Summary
Tabular solution methods for finite MDPs

Methods Techniques Model-based Bootstrapping Algorithms

Dynamic 
programming Iterative Yes Yes

Policy evaluation
Policy iteration
Value iteration

Monte Carlo
Sampling

(episode-based 
estimation)

No No First-visit MC
Every-visit MC

Temporal 
difference

Approximation 
(sampling + 

approximation)
No Yes

TD(0)
Q-learning

SARSA

Model-based = we know the transition dynamics 𝒫 of the problem

51
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Summary
Tabular solution methods for finite discrete MDPs

𝒱 / 𝒬 and 𝜋 are stored as arrays
§ What happens to infinite or 

continuous MDPs?

§ Can we identify and enumerate all 
states? (not in POMDPs)Image from Sutton & Barto

Model-free deep RL

§ Function approximation of 𝓥 / 𝓠 and 𝝅
à Opens the door to high dimensional 

continuous problems (tractable).
à Can learn abstract features.
à Introduces bias, variance, and stability 

challenges.
à Fewer convergence guarantees.

§ The function we learn can generalise to 
states never seen before.
à Parameters 𝜃 are shared over all states.
à Generalisation only as good as data.

52
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Deep reinforcement learning

53

Policies are parametrized with parameters 𝜃 and the goal is always to maximise the 
cumulated expected reward

If the policy is parametrized with a neural network we can optimise the policy with 
gradient descent:

𝜃 ← 𝜃 + α∇𝐽 𝜋p |p

max
p
	𝐽 𝜋p =	𝔼F![𝒢G]

Policy gradient

How to calculate ∇𝐽 𝜋/
à Policy gradient theorem

§ Poor sample efficiency (needs many 
interactions).

§ Sensitive to learning rate 𝛼 and initialization 
parameters.

§ In its basic form has high variance due to MC 
return estimations.

§ Used in REINFORCE, A2C, A3C, TRPO, PPO, SAC.
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Deep reinforcement learning

54

§ Approximate the value function with neural networks.
§ Same concept as before: take the action with the highest Q-value.
§ Does not explicitly store the policy.
§ The noise in actions is dealt with by averaging over many samples and exploration.

Value-based

Actor-critic methods
Actor: learns the policy 𝜋4 a s  and improves it with policy gradient
Critic: learns the value function 𝒱 s 	or 𝒬(𝑠, 𝑎) or 𝒜(𝑠, 𝑎)= 𝒬 𝑠, 𝑎 − 𝒱 s
§ Actor uses the critic’s value in policy gradient
§ Critic updated using TD error (bootstrapping, sample efficient)
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Deep reinforcement learning

Description Policy Action space State space Operator

DQN Deep Q Network Off-policy Discrete Continuous Q-value

DDPG
Deep 

Deterministic 
Policy Gradient

Off-policy Continuous Continuous Q-value

A3C
Asynchronous 

Advantage Actor-
Critic Algorithm

On-policy Continuous Continuous Advantage

TRPO
Trust Region 

Policy 
Optimization

On-policy Continuous Continuous Advantage

PPO Proximal Policy 
Optimization On-policy Continuous Continuous Advantage

TD3
Twin Delayed 

Deep 
Deterministic 

Policy Gradient

Off-policy Continuous Continuous Q-value

SAC Soft Actor Critic Off-policy Continuous Continuous Advantage

Common model-free algorithms

55

§ Model-based RL
§ Meta RL
§ Multi-agent RL
§ Hierarchical RL
§ …
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Other concepts

56

Imitation learning
§ No trial and error, no solving an MDP, no learning from reward, no explicit reward.
§ Learns by mimicking expert behaviour. 

à It’s easier to show behaviour than to engineer a reward.

Inverse RL: you can learn a reward function that explains the expert behaviour.
Behaviour cloning: you can learn a policy from expert (𝑠, 𝑎) pairs à no need for extensive 
exploration (warm start to traditional RL, safer).

Distributional RL
§ Instead of estimating the expectation of returns (mean) we estimate the whole 

distribution over returns.
§ With full distribution agent knows about uncertainty, risk, and variability in future rewards.

à Robust policies
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Well done!
You made it through the introduction of
foundational RL concepts

§ Sutton & Barto book
§ https://arxiv.org/pdf/cs/9605103.pdf
§ Reinforcement learning lectures by David Silver
§ https://spinningup.openai.com/en/latest/
§ Coursera RL specialization
§ https://arxiv.org/pdf/1810.06339.pdf

@ansantam (LinkedIn, Instagram)

Resources

🤖

Let’s connect

Let’s get some 
questions now and 

continue the discussion 
during the coffee break

☕

http://incompleteideas.net/book/RLbook2018.pdf
https://arxiv.org/pdf/cs/9605103.pdf
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://spinningup.openai.com/en/latest/
https://www.coursera.org/specializations/reinforcement-learning
https://arxiv.org/pdf/1810.06339.pdf

