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Abstract
A large scientific community depends on precise modelling of complex particle-cascading

processes in various types of matter. The most obviously related fields are cosmic-ray physics,

astrophysical-neutrino physics, and gamma-ray astronomy. In this white paper we summarize

the steps needed to ensure the evolution and availability of optimal simulation tools in the

future. The purpose of this document is not to act as a strict outline of the software, but

merely to provide guidance for the vital aspects of its design. The main topics considered

here are driven by physics and scientific applications, furthermore, the main consequences

on implementation and performance are given an outline. We highlight the computational

performance as an important aspect guiding the design since future science applications will

heavily depend on an efficient use of computational resources.

1 Introduction, History, and Context
Simulations of air showers are an essential instrument for successful analysis of cosmic-ray data.

The air-shower simulation program CORSIKA [1] is the leading tool for the research in this field.

It has found use in many applications, from calculating inclusive particle fluxes to simulating

ultra-high energy extensive air showers, and has been in the last decades employed bymost of the

experiments (see e.g. [2] and references therein). It has supported and helped shape the research

during the last 25 years with great success. Originally designed as a FORTRAN77 program and

as a part of the detector simulation for the KASCADE experiment (the name itself comes from

“COsmic Ray SImulations for KAscade”), it was soon adapted by other collaborations to their

uses. The first were the MACRO [3] and HEGRA [4] experiments in 1993. As a consequence, over

the time it has evolved enormously and is nowadays used by essentially all cosmic-ray, gamma-

ray, and neutrino astronomy experiments. Furthermore, it helped to create a universal common

reference for the worldwide interpretation and comparison of cosmic-ray air-shower data. Before

CORSIKA, it was very difficult to assess the physics content of the data, and almost impossible

to qualify the compatibility of different measurements. In general the simulation of extensive air

showers was recognized as a fundamental requirement for astroparticle physics [5], and other

tools have also been proposed for this purpose, of which the most well known are MOCCA [6],

AIRES [7], and SENECA [8].

In general, the simulation of extensive air showers was recognized as one of the fundamental

prerequisites for succesful research in astroparticle physics [5]. In the past, some other tools have
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also been developed for these purposes, ofwhich themostwell known areMOCCA [6], AIRES [7],

and SENECA [8].

Over all the years CORSIKA evolved into a large and hard to maintain example of highly

complex software, mostly due to the language features and restrictions inherent to FORTRAN77.

While the performance is still excellent and the mainstream use-cases are frequently tested as

well as verified, it is increasingly difficult to keep the development up-to-date with requests and

requirements. It is becoming obvious that the limited features of the FORTRAN language and

the evident complexity of the new developments are getting into a conflict. Furthermore, in the

future, the expertise needed tomaintain such a large FORTRAN codebase will be more-and-more

difficult to provide. Therefore, it is important tomakeCORSIKA competitive for the challengeswe

are facing in the future, requiring us to make a major step in terms of used software technology.

This will ensure that CORSIKA will evolve further and become the most comprehensive and

useful tool for simulating extensive particle cascades in all required environments.

2 Purpose and Aim
The purpose of CORSIKA is to perform a “particle transport with stochastic and continuous

processes”. A next-generation CORSIKA (ngC) will implement this core task in the most direct,

flexible, and efficient way. In this document we will refer to this project as ngC, but just as

a simplification and to clearly distinguish it from the existing CORSIKA program. The ngC

will provide a framework where users can implement plugins and extensions for an unspecified

number of scientific problems to come. CORSIKA will take a step from being an air-shower

simulation program, to becoming the most versatile framework for particle-cascade simulations

available.

The ngC must support particle tracking, cascade equations (CE), thinning, various particle

interaction models, output options, (massively) parallel computations including GPU support,

various possibilities for user routines to interact with the simulation process, and full exposure

of particles while they are tracked/simulated. Furthermore, production of Cherenkov photons,

radio signals, and similar non-cascade extensions should be fully supported. As usual, the

cascades could be simulated in the atmosphere, but options for other media or a combination of

them will be added.

In the future we expect that millions, if not billions, of CPU hours of high performance

computing will be spent on air-shower simulations for experiments like CTA [9], IceCube [10],

HESS [11], MAGIC [12], the Pierre Auger Observatory [13], the Telescope Array [14], LOFAR [15],

and other next-generation experiments. It is up to ngC to make sure this is done as efficiently

and accurately as possible, while maximising the resulting physics output. In this respect, ngC

plays an important role in spending valuable and sparse resources while it is at the same time a

fundamental cornerstone supporting the physics output of many large experiments.

3 Main design considerations
Some of the goals to achieve with ngC are extensibility, flexbility, modularity, scalability, and

efficiency. The main outline of the steps of a typical particle transport code with processes is

illustrated in Fig. 1. The central loop involves a stack used for temporary storage of particles, a

geometric transport code, and a list of processes that can lead to secondary-particle production

or absorption.

3.1 Overcoming limitations of current CORSIKA
The current CORSIKA implementation has a number of limitations, originating mostly from

optimization to specific use-cases, most of which should be eliminated in ngC. These limitations

and our anticipated improvements include the following items:
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Figure 1: Scheme of particle transport code with processes.

1. The interaction medium is air. Its density is analytically described by five piecewise-

exponential layers. ngC should support arbitrary media (air, ice, lunar regolith, rock salt

etc.) and also transitions between them. In addition to density, the medium should provide

refractive index, humidity, temperature, and possibly other information. Medium proper-

ties might also need to be fed back to the cascade simulation, e.g. by influencing various

energy cutoffs.

2. In CORSIKA, processes taking the cascade simulation as input, e.g. radio or Cherenkov-light

calculations, cannot feed back information to the cascade simulation. In ngC, any process

should be able to give a useful feed-back, e.g. by requiring a change of simulation step-size.

3. In ngC, an interface should be provided for easy addition of new interaction models which

treat particles or energy ranges not covered by any other interaction model.

4. CORSIKA does not allow for particle oscillations (e.g. neutrinos, K
0

L
/K0

S
). A discussion

whether or not oscillations should be incorporated in ngC should be started.
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5. Support for inspecting and storing the history of ground-reaching particles (with the EHIS-

TORY option [16]) is very limited due to rigid memory layout.

6. No upward-going Cherenkov photons can be handled.

3.2 Related projects and previous work
ngC will heavily depend on expertise gained with the original CORSIKA program. In addition,

experience gained in other projects will be taken into account:

• MCeq [17] is a recent tool dedicated to the numerical solution of the CE. It already offers

GPU support and very high computational efficiency. CONEX [18] is a CE air-shower

simulation program that has been integrated in CORSIKA and provides enormous increase

in computation speed.

• dynstack [19] is a recent extension of CORSIKA. Its basic functionality should be adopted

for the stack of ngC.

• COAST [20] has beendeveloped forCORSIKAwith the aimof offering scientists a plugin-like

extensibility. The fundamental functionality of COAST will be available in ngC.

• Offline [21], the offline analysis framework of the Pierre AugerObservatory, offers a versatile

interface to and implementation of concepts related to geometry and coordinate systems.

• Otherprogramsalso combine tracking andphysicsprocesses, butwith emphasis ondifferent

aspects than what is needed in air-shower simulations; examples are GEANT4 [22] and

CRPropa [23].

3.3 Output
Physics processes of any type can produce various pieces of output information. These can be

particle lists, profiles, histograms, text, etc. Therefore, when this output is written to a disk, it

has to be stored in a similarly structured file format, since we require that all the relevant output

ends up in one single file only. However, output can also be written to other places than disk, for

example directly as input for subsequent workflow steps, network sockets, or other programs –

but this is subject to requirements from the user community. The user should be able to decide

what kind of output is optimal for his specific case.

The old binary output format “DATxxxxxx” file can still remain as a legacy option with

known limitations. The new standard output, however, will have an internal directory structure.

Different processes will produce their output in specific places in this structure. The content of

the output file will change with the choice of the processes and their configurations.

HDF5 [24] is an obvious choice to be considered, while still having the potential disadvantage

of being an external dependence. ROOT [25] could be another possible option.

3.4 Computational efficiency
Computational efficiency is not optional for ngC. The efficient use of expensive large-scale re-

sources is a crucial requirement, and must be planned and considered from the early on. The

priority is given to performance over run-time flexibility. The most fundamental settings of the

simulation must be defined at compile time in a static way: the type of stack, including particle-

level data content, physics models, environmental models, etc. Of course, all models can have

additional parameters that can be defined and modified at run-time.

In general, the use of run-timedynamic design patterns like virtual classes or dynamic libraries

should be minimized (i.e. no virtual methods). Static design patterns are preferred.

Data copy operations must be minimized, or performed as late as possible. The use of “lazy”

functionality, which is executed only delayed and when actually needed should be promoted.
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Compiler and CPU optimization should be fully considered for ngC. Production versions of

the code should claim full benefits fromall the available optimizations. The execution of particular

code on GPUs or other hardware accelerators (or maybe even more custom hardware) must be

transparently possible.

Parallel and multi-core computations are standard, and are built into the core of ngC.

4 Tools and infrastructure
The main development infrastructure for ngC will be provided by KIT. This is mostly the or-

ganization, discussion platform, scientific coordination, steering, and maintenance of the core

functionality. The most useful tool for collaborative development available today is git. Git al-

lows having a very dynamic and large base of contributors, and at the same time a well controlled

access to the main code-base via pull requests (PRs). The code review, discussion, testing and val-

idation of PRs will be an important task of the project steering. Code will be peer-reviewed, with

an emphasis on clearness and readability, and inline documentation (doxygen). Furthermore,

automatic unit-testing and validation will be performed. Unit tests must yield a very high cover-

age of the ngC code. Unit tests are executed automatically by a jenkins (or equivalent) service to

perform low-level code and PR validation. Additional automatic validation and high-level tests

must accompany the regular testing, cover all the important functionality and, in particular, all

physics.

Automatic testing will provide a well defined list of supported environments, combined with

a control over a specified set of different selections of simulation options.

We will use a gitlab server for the hosting, the default choice for this is https://gitlab.ikp.
kit.edu. This gitlab server provides also an issue tracking functionality that will be linked to

defined milestones. A wiki page service is also provided.

5 Main challenges
While there are many challenges to overcome, a list of topics that require particularly dedicated

attention is given in the following. These topics are more-or-less directly linked to the underly-

ing/internal physics of the cascade process and require very intelligent and likely highly-complex

solution.

1. Efficient integration of electron-gamma cascades (previously EGS4).

2. Random number generation in an inherently multi-core and parallel environment while

ensuring the full reproducibility of simulations.

3. Investigating the limits of equivalence between CE-solving and detailed transport methods

(dE/dX, Cherenkov, lateral structure, radio production etc.).

4. GPU optimization.

5. Scalability in supercomputing environments.

6 Details
Taking the aforementioned considerations and requirements into account, amore detailed scheme

of the simulation workflow becomes necessary, as outlined in Fig. 2. Some of the aspects of

this diagram still need to be optimized or determined precisely. Nevertheless, with the basic

design as given here, the modular functionality and building blocks can be developed in parallel.

Rudimentary definitions of interfaces needed for these purposes are given below.
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Note that the code fragments given as examples here are, first of all, not in any specific

language and do not follow any specific syntax. This is a pure pseudo-code used to illustrate the

basic functionality and employed patterns, and only vaguely resembles C++.

6.1 Conventions and coding
A computer language offering high level of design flexibility and at the same time excellent

compiler and optimization support is required. It is an advantage to chose a language that also

has non-science relevance and thus assures long-term support, development, and expertise. For

this purpose, we chose to use C++. At the beginning ngC will be based on the C++14 standard, a

choice that will most probably evolve in the future.

General guidelines for contributing of the code will be well defined and must be strictly

enforced [26]. These guidelines will be distributed via the documentation section on the gitlab

server mentioned above and/or the wiki pages. The guidelines can be discussed, agreed upon,

and also improved in discussions between the developers and the project steering. One of the

most important things in such a project is communication – and the code will be the prime means

of communication between the team members [27], since, let us not forget, most of the time

people will spend on this project will be dedicated to reading other people’s code [28]. A more

exhaustive list of core guidelines for C++ can be found in Ref. [29]. Those items are also relevant

in this respect:

• Code must be accompanied with inline comments. Note that a well chosen naming of

identifiers and functions can greatly reduce the burden of documenting the code. A well

written code is self-explanatory to a large extend. In addition, for systematic documentation

doxygen commands must be used where possible.

• One aspect of choices of the style should be to minimize the probability of programming

errors. For example pointers should be used only where absolutely necessary, and that

should never be exposed to the user.

• Wewill favour static over dynamic polymorphism. On a low level of the code, this will lead

to the abundant use of templates. However, high-level users and physicists should not be

exposed to templates, unless absolutely required.

• Test-driven development is encouraged. Therefore, from early on, a useful setup of unit

tests should be supported by the build system. The unit testing will be an essential part of

ngC. A high coverage of code by tests will be a prime criterion for acceptance.

6.2 Dependencies
The use of external code and librariesmust beminimized to the absoluteminimum in order to stay

conflict-free and operational over a very extended period of time. Individual exceptions might

be possible, but must be well motivated and discussed before use. For each functionality we

should evaluate whether a basic re-implementation is more feasible than inclusion of an external

dependency. In any case, whenever possible, appropriate wrappers in ngC should hide the

implementation details of external packages in order to keep replacement or re-implementation

option open without a need for interface break. Likely packages and options for external libraries

are (excluding packages that will be distributed together with ngC):

• C++14 compiler.

• CMake build system.

• git.

• doxygen.
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• presumably boost for yaml and xml, histograms, file system access, command-line options,

light-weight configuration parsers (property tree), random numbers etc.

• One package for unit testing, could also be from boost.

• HDF5 and/or ROOT for data storage.

• Eigen for linear algebra.

• PyBind11 in case a desire for Python bindings arises.

• HEPMC as generic interface, also for exotics.

• In order to generate random numbers, we will use standardized interfaces and established

methods. For testing purposes, the possibility to exchange the random-number engine

should be relatively easy. No homegrown generators and only well established, checked,

and vetted methods for generating random numbers should be used, likely provided by

boost as well.

6.3 Configuration
The framework has to support extensive run-time (from configuration files or on command

line) as well as compile-time configuration. The latter involves conditional compilation, static

polymorphism, switching between policies in policy-driven classes.

The run-time configurationwill support structured yaml or xml as input, either in a single file,

or multiple files located in a directory. Modules of ngC can retrieve the required configuration

via a global object in a structured way. Command-line options are parsed and provided via the

same mechanism. By default, the complete configuration will be saved into the output file, and

will thus, if needed, allow identical reproduction of a simulation at a later time. Physics modules

can access configuration via a section name and a parameter name, for example

primaryEnergy = Config.Get("PrimaryParticle/Energy");

where PrimaryParticle is the name of the configuration section, and Energy the parameter.

The data can be obtained from files, or provided via the command line, for example via �-set
PrimaryParticle/Energy=1e18_eV.

For more intricate situations where a simple configuration file might not be sufficient, or when

a dynamic change of parameters during runtime is needed, the simulation process can be more

conveniently steered by means of a script. The library PyBind11 allows us to provide bindings to

Python with minimal efforts. It is up to the opinion of the community to decide whether this is a

feature worth having, at the cost of additional external dependency.

6.4 Units
ngC will utilize boost.units or the header-only library PhysUnits [30] to allow for convenient

attachment of units to the numerical literals (e.g. auto criticalEnergy = 87_MeV;), avoiding
other, hard to enforce explicit conventions. In this way an otherwise silent error of mismatched

units is converted to a compile-time error. During compilation the conversion of quantities to

common base units (which the developer does not need to know and are internally chosen to

minimize numerical errors) is performed. In addition, it will be possible in the future to change

the base units in case this will be desired.

Furthermore, as information about the unit of a quantity is encoded in its type, the compiler

performs a dimensional analysis of computations involving dimensionful quantities. This will

not only improve the code readability but also make development less error-prone due to the

compile-time check of unit commensurability. Thus, e.g. a typing error like in

auto distance = 35.2_cm;
auto time = 35.9_ns;
auto speed = distance + time; // compiler error!
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will result in a compiler error instead of staying unnoticed. Because of this functionality, PhysUnits
is superior tomore simplistic implementations like e.g. provided inGeant4/CLHEP [22, 31],where

units are provided only as a set of self-consistent multiplication constants.

These features introduce no runtime overheadwhen compiler optimizations are enabled since,

after all, such a dimensionful quantity will be in memory just the usual floating-point number.

6.5 Lorentz transformation and geometry
Each time a Lorentz transformation is created, an inverse should be also stored. Themost common

use case will namely be when projectiles will require a transformation to enter the center-of-mass

frame and the resulting secondary particles will need its inverse transformation to enter back into

the shower frame. The idea is to be able to write code like this for energy-momentum vectors:

auto cms = utl::CreateCenterOfMassFrame(particle1, particle2);
auto energy1 = particle1.GetEnergy(cms);
auto momentum1 = particle1.GetMomentum(cms);
...
auto rest = Atmosphere::GetRestFrame();
auto energySec = secondary.GetEnergy(rest);
auto momentumSec = secondary.GetMomentum(rest);

Equivalent transformations will work also on space-time vectors but since interaction models

do not require this information, it can be optimized away. The naive implementations of the

transformations become numerically problematic at ultra-high energies (e.g. ROOT). The code

offered in ngC must provide numerically stable transformations, preferably in the whole range

between the very small kinetic energies and the ultra-high energies encountered in cosmic rays.

The coordinate-system implementation of the Offline framework can be a suitable starting

point for the implementation of requirements in ngC.

6.6 Particle representation
The typical minimal set of information to describe a particle is: type, mass, energy-momentum,

and space-time position. In certain use cases this can be extended for example with (multiple)

weights, history information (unique ID, generation, grandparents, interaction ID), or further

information.

Interaction models typically do not care about the space-time part since once the model is

invoked according to the total cross-section, the impact parameter is decided internally by the

model in a small Monte-Carlo procedure (and not e.g. from themicroscopic positions of air nuclei

in the atmosphere). Nevertheless, the propagation and the continuous losses will eventually need

the space-time parts of the particle information.

Particle properties like mass and lifetime are extracted from the ParticleData.xml, file pro-

vided by PYTHIA8 [32], together with their PDG code [33]. To allow for efficient conversions

of particle properties as used in different interaction models, the ngC-internal particle code is

chosen to be different than the PDG code. Since the PDG code only very sparsely covers a large

integer range, they are not very useful as indices in a lookup table. ngC therefore uses a contigu-

ous range of integers which is automatically generated from the union of all particles known by

the user-enabled interaction models. Rather than using these integers directly in the ngC code,

enum declarations will be provided for convenience and improved code readability. In contrast to

their corresponding numerical values, the enum identifiers (e.g. pDStarPlus) are guaranteed to be

unique.

For this purpose, the needed code is generated by a provided script before the actual compi-

lation of ngC. This script will depend on the particle data xml file from PYTHIA. The output is

C++ code that will allow to write expressions like these:

auto mElectron = ParticleData::GetMass(pEMinus); // is a static expression
auto tauPi = ParticleData::GetLifetime(pPiPlus); // also a static expression
...
auto particleType = stack.GetTopParticle().GetType();
auto charge = ParticleData::GetCharge(particleType);
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The internal numeric particle-ID is just an index, the representation of particles in ngC code

and enums is obtained from the particle names in the xml file. When specific interaction models

internally use different schemes for particle identification, extra code is provided in the interface

part to those models, where the conversion between the external and internal codes is performed.

For binary output purposes, however, ngC-internal codes are converted to the well known,

standardized PDG codes to ensure seamless interoperability with other software packages used

within the HEP community. In any text output, e.g. log files, the output is always converted

to a human-readable identifiers. For example, cout << someParticleCode << endl; might,

depending on the value of someParticleCode, printout “e-” or “D+” unless a numerical output

(in ngC or PDG scheme) is explicitly requested.

6.7 Framework
The ngC consists of an inner core and associated modules that can also be entirely external.

Thus, there can be – and generally is – a distinction between code in the “core” of ngC and

“outside” of this, defining a “frontier” where conventions, units, and all kind of reference frames

have to be adapted and converted in a consistent way. Most obviously is this the case for all

existing hadronic event-generators and input/output facilities. Nevertheless, this can occur also

in other components, and the frontier can thus occur at different places. The code needed for

the conversions in the frontier must be provided together with the ngC framework. Special care

must be taken in cases where different models, for example, use different constants for the mass

of particles, which can lead to numerically unreasonable results like negative kinetic energies or

invalid transformations. The details of such effects must be investigated and a comprehensive

solution has to be found at a later time.

6.7.1 Particle processing and stacks

A core concept of ngC is that particles are stored on a dedicated stack. This is needed since

in cascade processes an enormous number of particles can be accumulated, requiring careful

handling of such data. The stack can automatically swap to disk when memory is exhausted.

The access and handling of particles on the stack has an important impact on the performance of

the simulation process. In typical applications it is optimal to process the lowest-energy particles

first, but there can be situations where completely different strategy becomes relevant. The stack

should be flexible enough to allow various user-specific interventions, while the simulation is

writing and reading from it.

In ngC there is no need to have a dedicated persistent object describing an individual particle.

Particles are always represented by a reference/proxy to the data on the stack. On a fundamental

level, such stacks can be a FORTRAN common block, dynamically-allocated C++ data, a swap

file, or any other source/storage of particle data.

6.7.2 Main loop, simulation steps, processes

A central part of ngC is the loop over all particles on the stack. These particles are transported and

processed in interactions with the medium, and as part of this also cascade-equation tables can

be filled. All these processes can produce new particles or modify existing particles on the stack.

Furthermore, the processes can produce various output data of the simulation process. Cascade-

equation migration-matrices are either computed at program start or read from pre-calculated

files. When the stack is empty (or any other trigger), the cascade equations are solved numerically,

which can, once more, also fill the particle stack. Thus, a double-loop is required here in order to

process the full particle cascade:

while (!stack.Empty()) {
while (!stack.Empty()) {

auto particle = stack.Get();
Step(particle);

}
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cascadeEquations.Solve();
}

The transport procedure needs to handle geometric propagation of neutral and charged parti-

cles, thus, magnetic and electric deflections are important. The transport step-length is used to

distinguish two type of processes:

• Continuous processes occur on a scale much below the transport step-length, e.g. ionization,

and thus an effective treatment can be used.

• Discrete processes typically lead to the disappearance of a particle and to production of new

particles (typically in, but not limited to, collisions or decays).

The optimal size of the simulation step is determined from the list of all processes considered.

The discrete process with the highest cross-section limits the maximum step size. However, also a

continuous process can limit the step size, for example by the requirement that ionization energy-

loss, the multiple-scattering angle, or the number of emitted Cherenkov photons cannot exceed

specific limits. Furthermore, even particle transport is just a specific type of a continuous process

which propagates particles. Since the propagation can lead a particle from one medium (e.g. the

atmosphere) into another (e.g. ice), the particle transport can also have a limiting effect on the

maximum step length allowed. An individual step cannot cross from one medium to another,

but for correct treatment must terminate at the boundary between the two media. Furthermore,

the particle transport in magnetic fields leads to deflections, where step size has to be adjusted

according to the curvature of the deflection.

Thus, the geometric particle-transportmust be thefirst process to be executed. The information

about the particle trajectory is important input for the calculation of subsequent continuous

processes. Finally, the type and probability of one single discrete process is last to be determined

for each simulated transport step. The discrete process simulated is randomly selected, typically

according to its cross section or lifetime. The structure of the code to execute in one simulation

step is thus:

Step(auto particle)
{
auto stepLength = MinimalStepLength(tracking, continuousProcesses, stochasticProcesses);
auto trajectory = tracking.Propagate(particle, stepLength)
for (auto cp : continuousProcesses) {

cp.Propagate(particle, trajectory, stepLength);
}
// randomly select ONE or NONE stachastic process
if (discreteProcess dp = SelectStochasticProcess(stepLength)) {

dp.Interact(particle);
}

}

The numerical solution of the cascade equations is performed as being functionally fully equiv-

alent to a normal propagation. While some of the processes can easily be formulated using

migration matrices, our aim is, though, to scientifically evaluate and exploit the concept as exten-

sively as possible, covering the production of Cherenkov photons, radio emission, etc. The data

for the cascade equations is stored in a table (which in general will cover multiple dimensions)

representing histograms, for example of the number of particles of specific type versus energy.

The migration of particles to different bins in energy and to different particle types is described

by pre-computed migration-matrices. The matrices implicitly already encode the information on

the geometric length of simulation steps. In some aspects the cascade-equation approach corre-

sponds to the approximation where the discrete processes are handled like continuous processes.

This is reflected in the structure of the corresponding code:

CascadeEquations::Solve()
{
while (!table.Empty()) {

for (auto cp : continuousProcesses) {
cp.CascadeEquationPropagate(table)

}
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for (auto dp : discreteProcesses) {
dp.CascadeEquationPropagate(table)

}
}

}

The limits of the application of cascade equations to specific processes are not known precisely

at this moment and certainly there are various challenges facing us ahead. Particularly difficult

processes are those which depend significantly on geometry, like Cherenkov or radio emission.

It is up to the detailed studies to evaluate their performance and adapt the methods to potential

(limited) use cases. This will be subject of research as part of the project.

6.8 Radio
Radio-emission calculations, which were in the original CORSIKA provided by the CoREAS

extension [34], rely on the position and timing information of charged particles to calculate

the electromagnetic radiation associated with a particle shower. With its increased flexibility,

ngC will enable radio-emission calculations for a much larger range of problems. In particular,

simulation of the radiation, associated with showers penetrating from air into a dense medium

or vice-versa, will become possible due to the more generic configuration of the interaction

media. Feedback of the radio calculation to the cascade simulation (e.g., modifying simulation

step-sizes or possibly thinning levels) might increase performance and/or simulation accuracy.

GPU parallelization has the potential to greatly reduce computation times, which are currently

the main bottleneck for simulations of signals in dense antenna arrays. Simulations in media

with a sizable refractive-index gradient will require certain ray-tracing functionalities, possibly

even finite-difference time-domain calculations. The modular approach of ngC will allow the

implementation of different radio-emission calculation-formalisms and enable systematic studies

of their differences.

6.9 Environment
Traditionally the medium of transport for CORSIKA was the Earth’s atmosphere. It is one of the

purposes of ngC to allow for much more flexible combination of environments. This includes

water, ice, mountains, the moon, planets, stars, space, etc. In this case also the interface between

different media becomes a matter of significance for the simulation. Showers can start in one

medium and subsequently traverse into different media. The environment will be a dedicated

object to configure for every physics application. The structure of the environment will be defined

before compilation, the properties of the environment can be configured via configuration files in

any way needed for the application. This can be either static, or time-dependent.

The global reference frame is specified by the user and depends on the chosen environmental

model. For a standard curved Earth this is the center-of-the-earth frame. With double floating-

point precision this yields a precision better than a nanometer over more than 10 000 km distance.

Particles are tracked in the global reference frame. The secondary particles produced by

discrete processes occurring at specific locations in the cascade are transformed and boosted back

into the global coordinate frame.

For specific purposes, like tabulations and some approximations, the shower coordinate-system,

in which the z-axis points along the primary-particle momentum, can also be relevant. The

transformation matrix from global to shower coordinate-system is provided for this purpose.

The initial randomization of primary-particle locations and directions is performed by ded-

icated modules, which can be changed and configured by the users to get on the detector level

the desired distributions. The environment object provides all of the required access to the

environmental parameters, e.g. roughly in the following form:

Environment::GetVolumeId(point)
Environment::GetVolumeBoundary(trajectory)
Environment::GetTargetParticle(point)
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Environment::GetDensity(point)
Environment::GetIntegratedDensity(trajectory)
Environment::GetRefractiveIndex(point)
Environment::GetTemperature(point)
Environment::GetHumidity(point)
Environment::GetMagneticField(point)
Environment::GetElectricField(point)

This interface is sufficient since, for example a concept like altitude, defined as distance from

a point to a surface on a direct line to the origin (center of the Earth), is needed only internally

within the environment object.

The environment object will use a C++ policy concept to provide access to the underlying

models. This requires re-compilation after changes in the model setup. However, individual

models can still be configured at the runtime.

6.9.1 Geometric objects

We will keep the geometry description as simple as possible and to the level needed to achieve

the physics goals. At the moment, this goals include being able to define different (typically very

large) environment regions with distinct properties. Initially, it is sufficient to provide only the

most simple forms and shapes, e.g. sphere, cuboid, cylinder, and maybe trapezoid as well as

pyramid. The geometry package must be structured in a generic way, so that it can be extended,

if needed, to include more complex and fine-grained objects at a later time. We are not planning

to support general-purpose geometry as, for example in Geant4 [22]. When in a specific volume

of the simulation a very complex geometry is required, it is probably the best choice to allow

seamless integration of ngC with Geant4, where particles can be passed-on from one package to

the other.

7 Summary
The steps towards creation of ngC outlined here are optimized to best support scientific research

in fields where the simulation involves particle transport and particle cascades with stochastic

and continuous processes. The targeted goals of the resulting framework will be far beyond the

capabilities of the original CORSIKA program. It is up to the scientific community to decide

in which concrete applications ngC will be used in the future. It is our aim to offer long-term

support for the ngC program over a period of more than 20 years.

The modularity of the proposed code and the magnitude of the project offers the opportunity

for the scientific community to participate in a collaborative manner. Specific functionality and

modules can be provided and maintained by different groups. The core of the project, the

integration, and the steering are provided by KIT. This can be also a suitable model for a scenario

where different communities have different requirements, but the overall collaborative approach

is the one we want to promote and foster. This will require dedicated and strict commitment to

the project from all the participating parties in order to assure the stability and functionality with

no compromises needed.

A better access to the air-shower physics-simulation process will be one of the keys to resolve

the main open questions of cosmic-ray physics, the universe at the highest energies, and related

scientific problems.
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