
Tobias Winchen - Propagation and Acceleration of UHECR
1

Modular Software Design
in CRPropa 3

Tobias Winchen
for the CRPropa Developer Team

Next Generation CORSIKA Workshop
June 2018

2

Simulation Framework

Download: Online demo in your Browser:
http://crpropa.desy.de http://vispa.physik.rwth-aachen.de

Rafael Alves Batistaa,b, Julia Becker Tjusc, Andrej Dundovica, Martin Erdmannd, Christopher Heiterd,
Karl-Heinz Kamperte, Daniel Kuempeld, Lukas Mertenc, Gero Müllerd, Günter Sigla, Arjen van Vlieta,f,
David Walzd, Tobias Winchend,e,g, Marcus Wirtzd

RWTH Aachen Universityd, Ruhr Universität Bochumc, Vrije Universiteit Brusselsg, University Hamburga, Radboud University Nijmegenf,
University of Sao Paolob, Bergische Universität Wuppertale

Toolbox for Simulations of UHECR Propagation

S
ke

tc
h

by
 L

uk
as

 M
er

te
n

http://crpropa.desy.de/
http://vispa.physik.rwth-aachen.de/

Example: Steering / Simulation Setup Code
Example in Python, but C++ would also be possible

… more interactions ...

1. Import +
 define empty simulation

2. Add modules

3. Define sources

4. Execute modules on
 output of sources

4

Overview Object Oriented Design

Types of Objects:
Candidate:

Data storage for state of single
cosmic ray particle state
(Energy, position, id, ..)

Sources:
Creates new candidates

Modules:
Change state of candidate
(Move, interact, output, …)

Auxiliary:
Magnetic field,
photon field, ...

Sources, Modules and Auxiliary class
are independent and stateless to enable
parallel processing

New objects can be coded in C++ or Python (Interface generated using SWIG) by the user
Without recompiling CRPropa core.

5

Candidate: Stores Data on Particle

Current

Id,
Location,
Energy,
Moment.,
...

Previous

Id,
Location,
Energy,
Moment.,
...

Creation

Id,
Location,
Energy,
Moment.,
...

Secondaries
Vector<ref_pttr<Candidate>>

Custom Properties

String based additional properties
If existing data member are not
Sufficient (map of union type)

Source

Id,
Location,
Energy,
Moment.,
...

has

has

ha
s

ha
s

ha
s

ha
s

Candidate
- current step size
- next step size
- isActive?
 ...

P
ar

ti
cl

eS
ta

te

6

Modules: Modify Candidate
Prototype Propagator

1. Save current state:
PreviousState = CurrentState

2. Make step
- CurrentStep=NextStep
- Update position
 according to CurrentStep

3. Set NextStep to maximum

exit module

Prototype Interaction

1.If not applicable:
Do nothing

2.Calculate probability
 to interact in current
 step according to
 current candidate state

3.If no interaction:
- Limit next step to small
 fraction of m. free path
- exit module

 If interaction:
- Modify current particle
- add secondaries
- Repeat from 2

● Candidate has individual step size
● Every module limits the stepsize to a small fraction of its mean free path

● Order does not matter
● Modules are independent, no communication required

● Modularity in interactions is paid for by random numbers as need to be generated
in every cycle by every module (CRPropa not limited by RNG)

7

Module Features are Separate Objects
E.g. Observer

ObserverFeature
checkDetection(Candidate*)

Observer

Has list of features

process(Candidate *c)
For list of features
checkDetection(c)

ObserverSurface RedshiftWindow ...

has

is is is

Example: Output particles crossing different planes

8

Does this Scale for Many Particles?
 EM Cascades of secondary photon

and electrons (Heiter et al. 2018)

Pair production

Double pair production

Triplet pair production

 Inverse Compton scattering

3 background (CMB, IRB, URB) →
12 stochastic interaction modules

 Continuous energy loss due to
redshift

 Injected 1000 EeV photons
in 4 Mpc distance

 Cascaded to z=0 or variable
minimum energy

12 Interaction Modules (CMB, IRB, URB)
 3 Interaction Modules (CMB)

Implementation scales linearly with
number of processed particles

@ ThinkPad T470s, Intel i7-7500u

9

How did we get There?

 Several versions of CRPropa
 Previous modular codes

PAX, PXL, RDAS

Software development
philosophy:

 KISS: Keep it simple, not stupid
 YAGNI: You ain’t gonna need it
 Refactor often and early
 Dev. Substeps:

Make it work
Make it right
Make it nice
Make it fast (if needed)

 Code review (of substantial changes)
git + pull requests (github)

 Unit Tests + Continuous Integration
gtest + travis

 Minimize dependencies:
User should not need to compile dependencies
Dependencies should be standard / trivial

available on supported platforms (Linux + Mac)
» Cmake

» Python

» Swig

» hdf5

or shipped in static version.
» Healpix subset, eigen, kiss, (tinyxml, thread),

hepid

Boost (and ROOT) are known to cause
problems

10

Conclusion

 CRPropa3 highly modular code design
User friendly (all dependencies except python + swig) shipped +

compiles using standardized tool chain (cmake)
Highly modular
Easily extendable (C++/python modules and features without

recompiling)
Scales linearly to high particle numbers
Webpage / Code / Issue-tracker / Examples / Documentation / ...

 Several approaches probably transferable to Next Generation
CORSIKA

Contact: tobias.winchen@rwth-aachen.de

https://crpropa.desy.de/
https://github.com/CRPropa/CRPropa3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

