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Supercomputing

• There are three ways of  
doing anything faster: 

• Work harder 

• Work smarter 

• Get help 

• Next station: Exascale.
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Exascale Computing
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Exascale Computing

• „Using the conservative 2.7 teraflops/chip estimate, it will take more 
than 370 thousand of these chips to get to a peak exaflop …“ 

• „… the system would need more than 1,000 such racks in the final 
exascale machine.“ 
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Exascale Computing 

• Millions of compute cores 

• Billions of concurrent activities 

• Faults in the order of minutes 

• Checkpointing takes hours 

• Silent data corruption everywhere 

• Software faults everywhere  

• Redundancy limited by costs and power wall (20MW)
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Exascale Reliability

• Let’s just keep the current mean time to interrupt (MTTI) 

• 10x - 100x increase in core count = 

• … at least 10x increase in 
hardware reliability 

• … at least 10x increase in 
software reliability 

• … at least 10x increase in 
fault tolerance efficiency 

• (Wrong) assumption: No major change in technologies.

�6



Exascale: Two fronts
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Reliability 101

• Fault intolerance - „They are not acceptable“ 

• Fault prevention  - „Do not introduce them“ 

• Fault removal  - „Remove them“ 

• Fault tolerance - „They happen anyway“ 

• Error recovery - „Heal their effects“ 

• Error mitigation - „Circumvent their effects“ 

• Models to understand the fault -> error -> failure chain
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HPC Reliability - Fault Classes
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„It is important to note that the number 
of failures with undetermined root 

cause is significant. [...] hardware and 
software are among the largest 

contributors to failures.“  

[Schröder06]



HPC Reliability - Compilers

• Run faster through better code 

• Compiler optimizations have a 
reliability impact [Ashraf17] 

• Simulated register bit flip 

• Compiler-based faul injection 

• Varying increase of failure rates 
from increasing optimization 

• Blindly applying maximum 
optimization is no longer 
feasible
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Tab. I: Optimizations applied at each level by clang. Each column shows the additional optimizations added to the previous
level (optimizations between parenthesis are removed).

Opt-level Optimizations Applied (in order)
O0 -targetlibinfo -datalayout -notti -basictti -x86tti -preverify -domtree -verify
O1 -no-aa -tbaa -basicaa -globalopt -ipsccp -deadargelim -instcombine -simplifycfg -basiccg

-prune-eh -inline-cost -functionattrs -sroa -early-cse -lazy-value-info -jump-threading
-correlated-propagation -tailcallelim -reassociate -loops -loop-simplify -lcssa -loop-rotate
-licm -loop-unswitch -scalar-evolution -indvars -loop-idiom -loop-deletion -loop-unroll
-memdep -memcpyopt -sccp -dse -adce -strip-dead-prototypes -always-inline

O2 -slp-vectorizer -globaldce -constmerge -barrier -loop-vectorize -gvn -inline (-always-inline)
O3 -argpromotion

program1, and miniFE from the DOE proxy applications.
LULESH [12] is a shock hydrodynamics proxy application de-
veloped by the ASCR ExMatEx Exascale Co-Design Center2

to model numerical algorithms and data motion of scientific
applications that solves a Sedov blast problem with analytical
answers. We run LULESH with total aggregate number of
elements equals to 91125 and 1728000 for single node and
multiple node experiments, respectively. LAMMPS [23] is a
molecular dynamics code that models an ensemble of particles
in a liquid, solid, or gaseous state. The application computes
Newton’s equations of motion for system of interacting par-
ticles and can model atomic, polymeric, biological, metallic,
granular, and coarse-grained systems using a variety of force
fields and boundary conditions. We solve the Cu metallic
solid with embedded atom method (EAM) potential which
involves the dynamics of 32,000 atoms for 20,000 and 75,000
time steps for single node and multiple node experiments,
respectively. MCB3 models the solution of a heuristic transport
equation using a Monte Carlo technique. The application
employs typical features of Monte Carlo algorithms such as
particle creation, particle tracking, tallying particle informa-
tion, and particle destruction. The heuristic transport equation
models the behavior of particles that are originated, and then
travel with a constant velocity, scatter, and are absorbed. We
run our MCB experiments with up to 12 million particles.
miniFE4 is a DOE proxy application which implements several
kernels resembling implicit finite-element applications. The
application assembles a sparse linear-system from the steady-
state conduction equation on a brick-shaped problem domain
of linear 8-node hex elements. Next, miniFE solves the linear-
system using a simple un-preconditioned conjugate-gradient
algorithm. We solve small problem size of 264 x 256 x 256
for single node and medium problem size of 784 x 768 x 768
for multi-node experiments.

IV. EXPERIMENTAL RESULTS

In this section, we analyze effects of the compiler opti-
mizations presented in Section II-C on the vulnerability of
tested applications running on single and multiple nodes.
We also analyze the performance vs. vulnerability trade-
offs and the causal relations between compiler optimizations

1https://asc.llnl.gov/CORAL/
2http://science.energy.gov/ascr/research/scidac/co-design
3https://codesign.llnl.gov/mcb.php
4https://mantevo.org/
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Fig. 1: Performance impact of compiler optimizations.

and application vulnerability. The experiments on single and
multiple nodes are performed using the reference input set of
each application as described earlier. We use all available cores
for all applications except LULESH2, which requires a perfect
cube number of MPI tasks, e.g., 27 on single node and 512 on
multiple nodes. To ensure reasonable statistical significance,
we conduct 1,000 runs for each application/set of compiler
optimizations. We randomly select the dynamic cycle at which
we inject a fault and the target MPI task. The random cycle and
MPI task are extracted from two separate random sequences
obtained from the same uniform random number generator
using distinct seeds. We validated the random sequences with
the χ2 test and verified the uniform coverage of cycles and
MPI tasks. Overall, a total of 32,000 injections were performed
considering both single and multiple node experiments (1000
injections for each application, each compiled with O0, O1,
O2, and O3).

A. Performance Analysis

As most compiler optimizations primarily target increased
performance, we first analyze the effects of applying a
different set of compiler optimizations on the applications’
execution time. We apply the set of optimizations
reported in Table I: increasing levels of optimization
generally augment the previous set of optimizations with
additional ones. For example, optimization level O2
augments the set of optimizations used at level O1 with
-slp-vectorizer -globaldce -constmerge
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(b) 16 Nodes (512 cores)

Fig. 2: Statistical breakdown of application vulnerability to injected faults.

that require additional iterations to converge for miniFE and
fewer SDC cases for LAMMPS. Overall, however, our results
suggest that compiler optimizations have a stronger impact
on LULESH2 and miniFE than on the other two applications,
as the former show a number of crashes that considerably
increases with the optimization level. For LAMMPS, we notice
that the number of crashes increases between O0 and O1
(relative increase of 239%), but then remains constant.

The trends observed on single-node experiments can be
also identified on the multi-node experiments (Figure 2b): in
both cases, the number of crashes for LULESH2 and miniFE
increases with the optimization levels (percentage increases
up to 367% and 383% as compared to O0, respectively),
but in the multi-node experiments the number of crashes
for LAMMPS steadily increases with each optimization level.
Comparing Figures 2a and 2b we observe a general increase
in the applications sensitivity to faults, which is due to a
combination of factors. First, a fault injected into a specific
MPI process propagates faster in the application when the
number of MPI processes increases. This is due to the higher
number of MPI messages exchanged, which increases the
probability that a specific MPI process contaminates others.
Second, assuming a constant per-process crash probability,
using more MPI processes increases the probability that the
entire application crashes as the result of any of the MPI
processes crashing. Notably, for LAMMPS with optimization
level O3, the Masked cases decrease from 54.1% to 37.5%
when increasing the number of MPI tasks from 32 to 512.

C. Analysis of the Causal Relation between Code Optimiza-
tion and Vulnerability

In Section IV-A, we observed that increasing levels of
compiler optimizations have the potential of dramatically in-
creasing application performance, with speedup up to 2.8x. In
Section IV-B, instead, we observed that compiler optimizations
also have an impact on application vulnerability and that this
impact is usually negative, i.e., the vulnerability of applications

increases with increasing levels of code optimization. In this
section, we analyze the reasons why code optimizations impact
fault masking.

As reported in Table II, the performance observed in Fig-
ure 1 is mostly achieved by applying optimizations which
result in a decrease in the number of instructions, despite the
fact that the IPC of the tested applications generally reduces
when increasing the optimization level. In fact, LLVM applies
aggressive dead code elimination (-adce) and combining
redundant instructions (-instcombine) across all optimiza-
tion levels. By observing the results in Table II and the results
in Figure 2, we note that IPC and application vulnerability
seems inversely proportional, i.e., when the IPC decreases
the application vulnerability increases. We further investigate
the causal relation between compiler optimizations, IPC and
application vulnerability in two directions: first, we analyze the
relation between stores and vulnerability and then the relation
between loads and vulnerability.

The number of expected faults during an application run is
greatly affected by the application execution time. However,
the fact that an application runs for a shorter amount of time
than another application does not imply that the former is
more reliable than the latter [9]. To avoid effects of the bias
induced by the different amount of instructions and execution
time of each application, we analyze loads and stores with
respect to the total number of instructions. Figure 3 shows the
percentage of application crashes as function of the number
of stores/instruction, which increases with the level of code
optimization. As we can see, there is a positive correlation,
albeit not perfect, between the percentage of crashes and the
number of stores per instruction for all applications except
MCB. This is due to the probability of a fault to propagate
in the application memory state and, eventually, crash the
application. In fact, although we inject a single bit-flip during
the execution of the application, fault propagates and corrupts
the application state through store instructions resulting in
multiple errors/failure [1]. However, there is a probability

12791279



HPC Reliability - DRAM

• Soft errors through package pollution, temperature, cosmic rays … 

• Example: Analysis with disabled ECC in an HPC cluster 
[Bautista-Gomez16] 

• 923 nodes, one year, 4.2 million node errors detected, 
up to 9 corrupted bits per word 

• Over 99.9% of errors in less  
then 1% of the nodes 

• Recommendation: Put nodes 
immediately into quarantine
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occurred before we started login the temperature of the system,
so we do not know the temperature of the concerned nodes at
the moment of the corruption. However, temperature seems to
be an unlikely direct cause given that no other errors where
logged. Independently of the root cause, it is surprising that no
any other corruption was detected in those nodes or in other
nodes at the same time.

E. Memory Errors VS Time of Day
Given that all the error occurrences were logged with their

corresponding date and time, we can plot the number of
memory errors observed at each hour of the day. Figure 5
shows the total number of observed memory corruptions for
each hour of the day, for different numbers of corrupted bits.
Note that corruption with more than 5bit-flips are rare, thus
we group them all in a single group (”6+”).

Fig. 5. Number of errors per hour for different number of corrupted bits

Clearly, single bit-flips (magenta) are the predominant type
of memory errors, as shown in the analysis above. We observe
a rather homogeneous distribution of memory errors through
the day; that is to say, when we look at all the corruptions
logged during our study, we do not find any particular time of
day where memory errors are more or less frequent.

Fig. 6. Number of memory errors per hour for multi-bit corruptions

Given that single bit-flips are so predominant, we perform
a second analysis in which we filter single bit-flips and we
focus on multi bit-flips only. This is plotted in Figure 6. We
found that the number of multi-bit corruptions between 7am
and 6pm is double the number of multi-bit corruptions during
the night. The distribution seems to have a bell shape with

its highest point at noon. This got our attention because, in
contrast with single-bit corruptions, there seems to be a high
correlation between the position of the sun and the number of
multi-bit corruptions. It is known that neutron showers, caused
by the interaction between the solar wind and our atmosphere,
can affect electronic components [15], [16]. The results of this
study point in that direction, and suggest that multi-bit memory
errors are mostly caused by cosmic rays. This is also supported
by the previous analysis showing that multi-bit errors are often
accompanied by errors in other memory regions.

F. Memory Errors VS Temperature
We study whether there is any correlation between mem-

ory errors and high temperatures. We started logging the
temperature of the nodes in April 2015, so during the first
months of the study we do not have information about the
temperature when an error occurred. Nonetheless, we have
over nine months of data with thousands of memory errors and
their respective node temperature, which give as a statistically
significant dataset. The room temperature was maintained
between 18◦C and 26◦C during the whole period of the study.

Fig. 7. Memory errors vs temperature for different numbers of corrupted bits

The temperature of the node for the different types of
memory errors (i.e., single bit-flips, etc.) is shown in Figure 7.

Fig. 8. Number of errors vs temperature for multi-bit corruptions

There is a small set of memory errors that show a node
temperature over 60◦C which is higher than the normal work-
ing temperature for a compute node and those errors could be
temperature induced. Nevertheless, most errors happen when
the node has a temperature between 30◦C and 40◦C, which
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HPC Reliability - Long Term

• 5 years of logs for IBM Blue Gene/Q Mira system [Di18] 

• 49.152 nodes, 786.432 cores, PowerPC A2 1.6 GHz 

• 80% of fatal events are indicated by ~20% of the monitored attributes 

• Strong clustering 

• Strong seasonality 

• Spatial error correlation 
mainly inside racks 

• MTTI 2-4 days
�12
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fatal events. If we set it to 0.0, 0.1, 0.5, and 0.8, respectively,
the number of fatal events will be 1,209, 1,214, 1,321, and
2,807, respectively, implying the following. On the one hand,
since the number of fatal events is not reduced signifi-
cantly when totally ignoring the similarity function, a large
majority of fatal messages actually belong to the spatial
duplication of the messages (i.e., most of the duplicated
fatal messages occur close on timestamps but with different
attributes or on different locations). On the other hand,
the similarity-based fatal event construction algorithm can
filter the duplicated messages effectively and a similarity
threshold of 0.2∼0.5 leads to satisfactory filtering results as
confirmed by the system administrator.

In Figure 9, we present the monthly count of the fatal
events, based on which we have two significant findings.
First, the number of fatal events per month ranges from 6
to 76, and it stays about 20 in most of cases, while only
about 10 fatal events (i.e., about half of the potential fatal
event count) per month affect the user jobs on average, as
implied by the system administrator. We note that the fatal
events constructed here do not represent system failures or
interruptions from the perspective of users, but represent
all the potential severe issues to the system. That is, many
of the fatal events did cause malfunction to some parts of
the system, but they did not affect user jobs in practice. For
instance, suppose the parallel file system (PFS) runs into an
error on some file disks such that they are not accessible for
a short period. No user jobs may be affected at all because
their data are already loaded into the memory and they
do not need to access the PFS during that malfunctioning
period. Such “nonharmful” fatal events were not counted in
the MTTI by the system administrators. Second, in Figure
9, we can clearly see a seasonality feature throughout the
5-year logging period. Specifically, failure rates are lower
in the winter and higher in the summer, in terms of the
Chicago climate graph (the sub-figure in Figure 9) that is
extracted from [35]. The possible reason is that either coolant
system or electric wiring system has heavier burden in the
summer than in the winter, leading to more errors in the
hot season. In particular, we can observe that the monthly
fatal event count reached up to 76 and 42 in July of 2013 and
July of 2015, respectively, which was caused by the circuit
breaker problem and coolant system issue, respectively, as
confirmed by the system administrator.

Chicago Climate GraphAv. precipitation
Av. high temp
Av. low temp

Fig. 9. Monthly count of the filtered fatal events

Figure 10 presents the daily count of fatal events based
on our Algorithm 1. At most six fatal events occur per day
after filtering the duplicated messages, compared with the
original 36k fatal messages per day as shown in Figure 3.

The system experienced no fatal events on most of days,
and usually only one fatal event on each day if any.

We also compute MTBFE with respect to different at-
tribute values, as shown in Table 3. We observe that the min-
imum MTBFE with respect to the most error-prone item for
any attribute (component, category, or location mode) is 2–
10 days. We also note that four items dominate the MTBFE,
which means that administrators/vendors can focus just on
these four items in each column in most cases.

TABLE 3
MTBFE (in days) with Respect to Different Attributes in Mira

(2013.4–2017.8: 1,613 days)

Component MTBFE Category MTBFE Location Mode MTBFE
FIRMWARE 3.73 BQC 2.77 RMNJ 2.334
CTRLNET 5.56 BQL 6.11 RMNU 6.16

MC 7.106 SoftwareErr 6.806 QIJ 10.9
CNK 13.01 ACtoDC PWR 53.77 RMN 22.72

LINUX 20.68 Cable 70.13 NULL 70.13
MMCS 47.4 Message Unit 94.9 RMS 80.65

BAREMETAL 55.62 Block 94.9 QI 90.88
CIOS 57.61 Infiniband 134.4 RL 179.2
Test 1600+ Coolant Monitor 179.2 RBP 230.4

ELF Image 403.25 QIHF ≈800
Node Board 537.7 QIU ≈800

Fan ≈800 QBP 1600+
Palomino ≈800 RMN,RMS 1600+

QI,RMS 1600+

Takeaway 4. Our similarity-based filtering method works
very effectively. The filtered fatal event interval is about 1.3 days
and the fatal event rate exhibits seasonal variations. The most
error-prone item value with respect to any key attribute appears
in the log every 2–10 days in the worst case.

Practical impact. If the fault-tolerance researchers want to
simulate/reproduce the failure events in their studies, we suggest
to follow the above statistics regarding MTBFE, also considering
the seasonable variance. Otherwise, the simulation/research con-
ducted may not be consistent with the practical cases.

Novelty of the takeaway. Compared to the existing filters
(temporal-spatial filter (TSM) [16] and adaptive semantic filter
[29], our designed similarity-based filter is more effective to filter
out the duplicated messages. In addition to the mean time between
fatal events (MTBFE) of 1.3 days we characterized, we also
disclosed the seasonality feature of the fatal events, which is a
totally new insight especially because such a study has to be
performed based on a long-term, large-scale system log, which
was rarely adopted in the existing related work.

5.2.3 Distribution Fitting of Fatal Event Interval with Maxi-
mum Likelihood Estimate (MLE)

We explore the best-fit distribution of fatal event intervals
with MLE from among 24 candidate distributions by a
statistical math library, SSJ [36]. Specifically, we perform the
following four steps: (1) compute the MLE parameters for
the 24 distributions based on the fatal event intervals; (2)
generate the cumulative distribution function (CDF) based
on the optimized parameters for each distribution; (3) plot
the real distribution based on the fatal event intervals; and
(4) identify the best-fit distribution by comparing the real
distribution and candidate distributions.

In Figure 11, we present the CDF curves of the typical
distributions in the order of fitting levels. We can see that
the Weibull distribution is the best fit for the fatal event in-
tervals. In addition, the Pearson6 and Gamma distributions
also fit the fatal event intervals well, providing more op-
tional distributions for system administrators or researchers



CPU -> GPU
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Of course, innovations in architecture contributed to 
performance beyond that which was delivered by the transistor.  
The single processor gave way to multiple processors; single 
operation gave way to vector operations; single coherent 
domain to the multiple coherent domains; the generic processor 
to the application specific processor; external memory to 
internal memories. Each of these achieve additional 
performance by more efficiently using the available transistors 
and their inherent capabilities.  

The failing of Moore's corollary while Moore's Law 
marches on results in supercomputer solutions that increase 
both the number of transistors in a processor and the number of 
transistors in the system.  This growth has consequences.  Prior 
to 2005, the demands of fault tolerance remained in the 
background because such demands were readily met with 
relatively small investments.  However, small investments 
cannot hold at bay the rising tide of faults sourced from 
geometrically increasing transistor counts. This is not 
surprising, Power faced similar challenges long before fault 
tolerance. The path of power as it navigated this transition and 
challenge is instructive as a hint at the path of fault tolerance. 

B. A Brief History of Power 
 Power and power-performance have always been a 
concern. However, a linearly decreasing per transistor power 
reality cannot compete against a geometrically increasing 
transistor count for long.  As a result, power became a first order 
design constraint to be balanced against performance.  This 
prodded the development of precise power estimation tools and 
low power innovations across transistor, circuit, micro-
architecture, architecture and even software to provide optimal 
power-performance balanced solutions.  Innovations here have 
tempered an otherwise sky rocketing concern and now power 
“slightly" increases with each generation of supercomputer.  

 Before power burst on the scene as a first order 
concern, its associated tools and predictions were nascent and 
cumbersome with results that were not nearly as accurate as the 
well-developed tools for addressing performance.  As a real and 
tangible first order concern, power related innovation, tool 
development, and mitigation solutions saw increased 
investments to meet the increased demand.  Today, the physical 
laws and trade-offs related power are well known and 

understood.  These combined with an activity factor extracted 
from performance models enabled relatively accurate 
prediction of a transistor's power.  Sum this across the sea of 
transistors and a highly accurate prediction of a component’s 
power emerges.  Sum this across the components and a picture 
of the total system’s power appears along with its top 
contributors. 

 Mitigating power is not easy and it represents real, 
sometimes difficult, trade-offs against performance, area, and 
cost.  Power became a first order design constraint with a cadre 
of supporting tools, trade-offs and innovative solutions 
following the pattern established by the first great concern: 
performance.     

C. Following History 
The path to an Exascale capable supercomputer 

necessarily entails an explosion in the number of transistors in 
a system from where we are today.  Delivering a constant user 
experience in the face of failures requires a decrease in effective 
failure rate matching the increase in failure points.   Failure 
rates, like power, have only seen a linear decrease from 
technology.  

Figure 3 shows a history of linear reductions in 
radiation susceptibility with a welcome drop at the tri-gate 
transistor transition.  Even if the post inflection rate is sustained 
it would not be sufficient to support the growth in transistor 
count.   The same may be said of permanent error rate, which 
may be relatively flat at the SOC level.  The additional SOCs 
needed for supercomputer performance require requisite 
reductions in permanent failures to keep pace.  Transistor 
technology may have lowered the probability of one or two 
failure sources (e.g. transient radiation and manufacturing 
failures) while creating new sources (e.g. permanent radiation 
failures) to exasperate the challenge and place additional 
constraints on the solutions. 

Figure 2 Analysis of key aspects of Top 1 supercomputer 
over time from [1] 

Figure 1 Transistor growth and Supercomputer 
performance as reported in [1] 

3C.4-2



HPC Reliability - GPU

• Titan supercomputer [Nie16] 

• 18.688 x K20X, 6GB memory, 60 Million node hours, 5 months 

• Single-bit-errors do not correlate with core / memory utilization 

• Application / user is relevant

�14

(a) (b)

Figure 5: GPU resource distribution for the SBE offender
nodes (excluding top two SBE offenders): GPU core
hours (a), and GPU memory utilization (b).

therefore, higher GPU resource utilization alone may not be
considered as the “cause”. Fig. 5 shows the normalized GPU
core hours and memory utilization for all SBE offender nodes.
The normalization is performed using the average for all SBE
offender nodes except the top two nodes (which are considered
outliers, as their SBEs occur in a single day only). We observe
that the nodes with higher SBE count do not necessarily use
higher GPU core hours or run workloads with higher memory
utilization.

While GPU resource utilization does not seem to be directly
correlated with the SBE occurrence frequency on the GPU
nodes, we suspect that the variance in GPU resource utilization
may be correlated to higher SBE occurrences. More precisely,
we want to test the hypothesis that days with higher variance
in GPU utilization experience higher single bit errors. Fig. 6
shows the top 50 days that encountered most SBEs (in increas-
ing order) and the corresponding variance in GPU resource
utilization on that day. We note that Fig. 6(a) and (b) indicate
that the couple of days with the highest SBE count may also
experience the highest variance in their GPU resource utiliza-
tion. However, a more closer look at top 4 to 50 days (Fig. 6(c)
and (d)) shows that variance in GPU resource utilization does
not imply higher daily SBEs.

Observation 3 We found that GPU resource utilization and
the variance in the GPU resource utilization do not seem to
be significantly correlated with the SBE occurrences. Higher
GPU resource utilization or its variance do not necessarily
result in a higher SBE count. We believe that an important
implication of this finding is that GPU resilience simulation
and modeling frameworks do not necessarily need to vary the
soft-error rate based on the compute load or variance in the
load. This can potentially simplify the design of such tools
without compromising the accuracy of the study.

We learned that the GPU resource utilization is not
highly correlated with the SBE frequency on SBE offender
nodes. Here, we investigate the relationship between specific
users/applications and SBE counts. In other words, is a certain
fraction of users/applications experiencing more single bit er-
rors than others? If so, what are the respective GPU resource
utilization levels?

(a) top 50 days (b) top 50 days

(c) top 4 to 50 days (d) top 4 to 50 days

Figure 6: Variance in the GPU resource utilization and daily
SBE count: GPU core hours for top 50 days (a),
for top 50 days excluding the top 3 days (b), GPU
memory utilization for top 50 days (c), and for top
50 days excluding the top 3 days (d). Days are sorted
in increasing order of SBE count.

(a) (b)

Figure 7: GPU core-hours for users (a), and applications (b)
experiencing SBEs.

Fig. 7(a) shows the SBE count of different users versus
their respective GPU core hours. Both SBE count and GPU
core hours have been normalized by their respective average
values. We also point out that only users that encountered at
least one single bit error are included in the plot. We found
that the correlation between GPU core hours and SBE count
is significant when studied at the user-level. The Pearson
coefficient is 0.59 with p-value < 0.05 while the Spearman
coefficient is 0.89 with p-value < 0.05. This indicates a strong
non-linear correlation. We did similar analysis between the
SBE count for users versus their respective GPU memory
utilization. We found similar trends in the results (not shown
here due to lack of space).

Fig. 7(b) shows that SBE count for applications versus its
respective GPU core hours. Only the applications affected by
SBEs are included in the plot. Similar to our previous analysis
for users, we found strong non-linear correlation in this case as
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Clouds?

• Approach: Redundancy with cheap hardware 

• Virtualize everything 

• Replicate everything  

• Reduce data consistency 

• Treat errors stochastically 

• Load balancing and failover 
are comparable problems
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Clouds?

• Google & friends solve a different problem 

• Cloud: Billions of small single requests, throughput counts 

• HPC: Thousands of gigantic single requests, completion counts 

• Clouds aim for availability, HPC (still) for reliability
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Proposal: Embrace the Uncertainty

• Reliability is getting crucial (again). 

• Post-mortem analysis is too late. 

• Hardware can no longer solve it alone. 

• It does not help to wait. 

• Accept that you have no clue about what is going on. 

• Create novel ways to deal with this partial system knowledge. 

• Make uncertainty explicit.
�17
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Uncertainty: Imprecise Models

�18

as basic event probability (e.g. in fault trees), a reasonable
quantitative analysis can only be realized if all the precise
numbers are available. This renders such modeling infeasible
in many cases, or makes it at least a very costly activity.
Moreover, in early phases of a system design, such numbers
might not be obtainable at all, since some components
might not even have been built, yet. Feedback from industry
shows that this prerequisite often leads to the sole usage
of qualitative methods such as FMEA. Many safety-related
industries still have to pay the price for getting trustworthy
reliability data, but the pace of hardware and software
evolution makes it difficult, even for them, to maintain the
necessary analysis quality.

Due to our understanding of the situation in engineering
practice, we argue that quantitative modeling should evolve
to become applicable even under conditions of imprecise
system knowledge. We propose to make uncertainty explicit
as part of the dependability analysis, in order to support
incremental knowledge improvements not only of the system
design, but also of the dependability model.

In this article, we describe a first step into this direction
by extending fault tree modeling in a way to embrace un-
certainty. Our contribution is an extended fault tree notation
for expressing configurable systems, combined with a quan-
titative analysis method that considers imprecise probability
data. This paper corrects and supersedes the initial FuzzTrees
idea sketched in [3].

II. THE FUZZTREE NOTATION

A fault tree is a graphical model that shows the causal de-
pendencies of faults potentially contributing to an undesired
failure event. A fault tree analysis is carried out in multiple
steps, which include the definition of boundary conditions,
the tree construction based on a given system design, the
determination of cut sets, and the qualitative and quantitative
analysis [4]. A static fault tree1 can contain primary events,
such as basic events or undeveloped events, intermediate
events, gates connecting lower-level events to higher-level
events, and transfer symbols [5]. Fault events are treated as
binary, meaning that they may or may not occur.

Our FuzzTree concept is an extension of the classical fault
tree notation. The main idea is to support high-level models
that can be instantiated with multiple system configurations.
A system configuration is the set of choices made for
each configurable component or subsystem. By picking one
specific system configuration, a FuzzTree instance is created.
The supported set of configurations for a component or
subsystem is assumed to be known at modeling time, while
it is unknown which specific configuration will finally be
used in operation. Instead of creating a fault tree for each
possible system configuration, our notation is now intended

1We treat dynamic fault trees as being out of scope for this article.

N:
 4-5
k:
 N-2
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 CPU
Failure

p=0.08
 ±
 0.008

Primary
 CPU
Failure

p=0.08
 ±
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Power
 Unit
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p=0.15
 ±
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RAID
 0
 Failure RAID
 1
 Failure

Disc
 Failure
p=0.12
 ±
 0.01

#2

Disc
 Failure
p=0.12
 ±
 0.01

#2

Figure 1. A FuzzTree example. Dashed lines visualize the variation points.

to allow a condensed notation and evaluation of all the
possible variations.

We explain the extended notation based on a minimal
example shown in Figure 1. The tree describes a small part
of a real-world server system that has three different system
design variation points:

• The system could be equipped with a second CPU that
acts as a redundant unit for the primary CPU.

• The number of power units used in the system is
flexible. At least three of the N power units must
always work to have a running system, so N �3 is the
maximum number of units that is allowed to fail for a
still-working system. Moving that to failure space, we
need at least k = N �3+1 failing power units to have
a failing power supply.

• The system has two discs, which can be either operated
in RAID 0 (striping) mode or RAID 1 (mirroring)
mode.

It must be noted that the over-simplified example was
chosen for clarity and space reasons. The general approach
has also shown to be valid for more realistic and larger
models in practice.

Our FuzzTree example can be unfolded into a set of
classical fault trees described in Table I. Each of these
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Figure 8. Membership functions for the example

existing efficient solutions, such as the one by Rushdi et
al. [13].

For the XOR gate case, the restriction of the possible com-
binations is not possible, so all of them must be considered.
Beside that, the approach is equivalent to the k-out-of-N
case.

A. Example

Continuing with our illustrating example in Figure 1, we
assume some fuzzy membership functions for the probabil-
ities of CPU, disc and power failures (see also Figure 8):

• P (“CPU Failure”) = tfn(0.072, 0.08, 0.088)
• P (“Power Unit Failure”) = tfn(0.1, 0.15, 0.2)
• P (“Disc Failure”) = tfn(0.11, 0.12, 0.13)

We pick a rather low decomposition number of m = 2,
here resulting in three ↵-cuts that need to be computed.
Table II lists the resulting intervals for each ↵-cut. As the
calculation follows the same principle for each value of ↵,
we only show computations for ↵ = 0. The same holds for
the various system configurations, where we only focus on
the (2-4-0) configuration.

Table II
INTERVALS FOR THE ↵-CUTS OF THE BASIC EVENTS IN (2-4-0).

↵ CPU Failure Power Unit Failure Disc Failure
0.0 [0.072, 0.088] [0.100, 0.200] [0.110, 0.130]
0.5 [0.076, 0.084] [0.125, 0.175] [0.115, 0.125]
1.0 [0.080, 0.080] [0.150, 0.150] [0.120, 0.120]

In the given example, the top event may happen if either
both CPUs, at least 2 out of 4 power units, or one of the
discs fail:

X = C _ P _ S

C represents the AND-combination of the two CPU
failures, P is the k-out-of-N gate for the power subsystem
failure and S is the result of the RAID 0 failure event.

The AND gate value for C is determined by multiplying
the intervals with each other. For the OR-gate of S, the
intersection of the boundary values has to be subtracted as

described above:
C = [0.072, 0.088] · [0.072, 0.088]

= [0.005184, 0.007744]

S = [0.11, 0.13] _ [0.11, 0.13]

= [0.11 + 0.11� 0.11 · 0.11, 0.13 + 0.13� 0.13 · 0.13]
= [0.2079, 0.2431]

The “2-out-of-4” gate for P can be computed as union of
“exactly 2-out-of-4”, “exactly 3-out-of-4” and “4-out-of-4”:

P = 6 · [0.1, 0.2]2 · (1� [0.1, 0.2])2 +

4 · [0.1, 0.2]3 · (1� [0.1, 0.2]) + 1 · [0.1, 0.2]4

= [0.0523, 0.1808]

The interval describing the 0-cut for the top event fuzzy
probability then equals:

X = C _ P _ S = (C _ P ) _ S

= [0.057212877, 0.187143885] _ S

= [0.25321832, 0.384749206]

The same computation has to be performed for ↵ = 0.5
and ↵ = 1.0 per instance, resulting in the complete result
as shown in Table III and Figure 9.

Table III
↵-CUTS FOR ALL SYSTEM CONFIGURATIONS.

FuzzTree ↵ = 0.0 ↵ = 0.5 ↵ = 1.0

(2-4-0) [.25322, .38475] [.28271, .34901] [.31482, .31482]
(1-4-0) [.30338, .43451] [.33337, .39946] [.36558, .36558]
(2-5-0) [.21875, .29246] [.2338, .27057] [.25103, .25103]
(1-5-0) [.27122, .34969] [.28792, .3271] [.30651, .30651]
(2-4-1) [.06862, .20088] [.09629, .16302] [.12796, .12796]
(1-4-1) [.13118, .26552] [.16012, .22787] [.19255, .19255]
(2-5-1) [.02563, .08101] [.03467, .06217] [.04677, .04677]
(1-5-1) [.09108, .15534] [.10286, .13484] [.11738, .11738]

It can be seen that the most reliable configuration is
(2-5-1), which is not surprising and could have been also
determined by manual inspection. However, other questions
are harder to answer without analytical support, such as if “it
is more reliable to use two CPUs with RAID 0, or one CPU
with RAID 1?”. The example also shows how FuzzTrees can
be a solution for reliability modeling with highly complex
and configurable systems.

B. Cost-Based Analysis
FuzzTrees can be easily extended with a notion of costs,

were each basic event gets an according indication. This
would express the necessary investment to include the event
source component, with a certain unreliability, into one sys-
tem configuration. The total cost of one system configuration
can then be computed by combining all costs of basic
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existing efficient solutions, such as the one by Rushdi et
al. [13].

For the XOR gate case, the restriction of the possible com-
binations is not possible, so all of them must be considered.
Beside that, the approach is equivalent to the k-out-of-N
case.

A. Example

Continuing with our illustrating example in Figure 1, we
assume some fuzzy membership functions for the probabil-
ities of CPU, disc and power failures (see also Figure 8):

• P (“CPU Failure”) = tfn(0.072, 0.08, 0.088)
• P (“Power Unit Failure”) = tfn(0.1, 0.15, 0.2)
• P (“Disc Failure”) = tfn(0.11, 0.12, 0.13)

We pick a rather low decomposition number of m = 2,
here resulting in three ↵-cuts that need to be computed.
Table II lists the resulting intervals for each ↵-cut. As the
calculation follows the same principle for each value of ↵,
we only show computations for ↵ = 0. The same holds for
the various system configurations, where we only focus on
the (2-4-0) configuration.

Table II
INTERVALS FOR THE ↵-CUTS OF THE BASIC EVENTS IN (2-4-0).

↵ CPU Failure Power Unit Failure Disc Failure
0.0 [0.072, 0.088] [0.100, 0.200] [0.110, 0.130]
0.5 [0.076, 0.084] [0.125, 0.175] [0.115, 0.125]
1.0 [0.080, 0.080] [0.150, 0.150] [0.120, 0.120]

In the given example, the top event may happen if either
both CPUs, at least 2 out of 4 power units, or one of the
discs fail:

X = C _ P _ S

C represents the AND-combination of the two CPU
failures, P is the k-out-of-N gate for the power subsystem
failure and S is the result of the RAID 0 failure event.

The AND gate value for C is determined by multiplying
the intervals with each other. For the OR-gate of S, the
intersection of the boundary values has to be subtracted as

described above:
C = [0.072, 0.088] · [0.072, 0.088]

= [0.005184, 0.007744]

S = [0.11, 0.13] _ [0.11, 0.13]

= [0.11 + 0.11� 0.11 · 0.11, 0.13 + 0.13� 0.13 · 0.13]
= [0.2079, 0.2431]

The “2-out-of-4” gate for P can be computed as union of
“exactly 2-out-of-4”, “exactly 3-out-of-4” and “4-out-of-4”:

P = 6 · [0.1, 0.2]2 · (1� [0.1, 0.2])2 +

4 · [0.1, 0.2]3 · (1� [0.1, 0.2]) + 1 · [0.1, 0.2]4

= [0.0523, 0.1808]

The interval describing the 0-cut for the top event fuzzy
probability then equals:

X = C _ P _ S = (C _ P ) _ S

= [0.057212877, 0.187143885] _ S

= [0.25321832, 0.384749206]

The same computation has to be performed for ↵ = 0.5
and ↵ = 1.0 per instance, resulting in the complete result
as shown in Table III and Figure 9.

Table III
↵-CUTS FOR ALL SYSTEM CONFIGURATIONS.

FuzzTree ↵ = 0.0 ↵ = 0.5 ↵ = 1.0

(2-4-0) [.25322, .38475] [.28271, .34901] [.31482, .31482]
(1-4-0) [.30338, .43451] [.33337, .39946] [.36558, .36558]
(2-5-0) [.21875, .29246] [.2338, .27057] [.25103, .25103]
(1-5-0) [.27122, .34969] [.28792, .3271] [.30651, .30651]
(2-4-1) [.06862, .20088] [.09629, .16302] [.12796, .12796]
(1-4-1) [.13118, .26552] [.16012, .22787] [.19255, .19255]
(2-5-1) [.02563, .08101] [.03467, .06217] [.04677, .04677]
(1-5-1) [.09108, .15534] [.10286, .13484] [.11738, .11738]

It can be seen that the most reliable configuration is
(2-5-1), which is not surprising and could have been also
determined by manual inspection. However, other questions
are harder to answer without analytical support, such as if “it
is more reliable to use two CPUs with RAID 0, or one CPU
with RAID 1?”. The example also shows how FuzzTrees can
be a solution for reliability modeling with highly complex
and configurable systems.

B. Cost-Based Analysis
FuzzTrees can be easily extended with a notion of costs,

were each basic event gets an according indication. This
would express the necessary investment to include the event
source component, with a certain unreliability, into one sys-
tem configuration. The total cost of one system configuration
can then be computed by combining all costs of basic
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Figure 9. The resulting top event fuzzy probabilities for all system configurations (a)–(h).

events and the costs associated with this configuration on
the transfer-in gates.

For inclusion variation points, the costs of an event are
added to the system costs if the configuration includes this
event. For feature variation points, the costs of the chosen
child tree contribute to the system costs.

In the case of a redundancy variation, the chosen k value
leads to an according cost contribution in the particular
configuration. In the most simple case, the resulting cost
equals k times the cost of a single unit. However, more
difficult cases may exist in which there is a non-linear
relationship to k. This could be expressed by a cost formula
per variation point.

Including costs directly in the analysis would allow to
build tools that determine information such as the cheapest
level of redundancy, the cost / reliability impact of optional
features, or the cost / reliability impact of feature choices.
A system designer would be also able to set the target
reliability of the system, for example according to some
service-level agreement, and let the FuzzTree tool chain
search for the cheapest system configuration to achieve the
reliability target. One interesting aspect of such a tradeoff
analysis is that higher costs do not always result in better
reliability. These cases typically appear if variation points
exist that target at improving the system’s performance or
functionality.

V. RELATED WORK

Fault tree modeling is a well-researched technique that
was invented by H. A. Watson in the Bell Labs in 1961 [14].
The approach is a standard in all safety-related industries,
were risk assessment and error propagation analysis is
mandated by standards and laws [15].

The idea for inclusion and feature variation points in
FuzzTrees was driven by research in the field of variability
modeling for complex software systems [16]. Many model-
ing approaches in this area focus on the extension of UML
towards feature diagrams [17].

It can be argued that variation points may not be needed
when the automated generation of fault trees from system
descriptions or software artifacts would work sufficient
enough. Since several decades of research did not lead
to broadly adopted and accepted solution for this problem
[15], we still see a need for optimized “manual” modeling

concepts. The automated generation of FuzzTrees, instead
of fault trees, would also allow a more concise graphical
notation of todays complex systems.

Kaiser et al. introduced a component concept for fault
trees [18], which allows to partition fault trees into in-
dependent components connected by ports. This technique
allows a more realistic representation of system structures,
but still does not consider the configurability of each system
component.

Walter et al. [19] developed the LARES description lan-
guage, which allows the specification of systems with con-
ditional behavior in error situations. However, the dynamic
behavioral description is currently fixed for one layout of the
system. We assume that the extension of LARES towards
reconfigurable systems would be extremely easy, which
makes the formalism an interesting “textual counterpart” for
FuzzTrees. LARES does not support fuzzy probabilities.

The concept of extended fault trees (eFT), as introduced
by Buchacker et al. [20], allows to extend the description of
event nodes using finite automata. This enables the reliability
engineer to formulate dependencies and interactions of spe-
cific failure modes in the tree leaves. The eFT is helpful
to make complex error propagation effects or common
cause issues more explicit, which is a different target in
comparison to our uncertainty consideration goal.

Bobbio et al. discussed in several articles the concept
of parametric fault trees [21]. Such trees allow avoiding
redundant sub-tree layouts by folding them into a more com-
pact representation. This is achieved by adding a replicator
event that indicates the root of a replicated sub-tree with
some parametrization. Like FuzzTrees, the approach targets
the complexity issue of fault trees for modern systems,
but mainly reformulates the same failure equation whereas
FuzzTrees can handle structurally different sub trees.

The notion of uncertainty is not new in dependability
modeling research. A typical example is the concept of
uncertainty importance measures [22], [23], [24]. These
metrics rely on the formulation of model input, in our
case the basic event rate or probability, as a random value
that follows a certain probability distribution function. This
allows, beside other things, the derivation of uncertainty
contributions for basic events with respect to the top event.
We argue here that the inclusion of even more unknown
probability distributions as part of the model does not help
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Uncertainty: Resilient Programming

• Processes need to fail-fast 

• Applications apply own fault tolerance 
schemes 

• User level failure mitigation (ULFM) 

• Actor-based message passing 

• Automated instruction redundancy 

• Active participation by HPC users 

• Old codes will most likely break
�19

save_checkpoint() 
result = primary_module() 

if acceptance_test(result): 
  return result 
else: 
  load_checkpoint() 
  result = alt_module1() 

if acceptance_test(result): 
  return result 
else: 
  load_checkpoint() 
  result = alt_module2() 

if acceptance_test(result): 
  return result 
else: 
  terminate()



Uncertainty: Anomaly Signals

• Anomaly detection approach 
[Oliner08, Salfner12] 

• Monitoring on different 
system levels with 
incompatible metrics 

• Each error situation can best 
be identified by only one of 
the system layers 

• Idea: Normalize and correlate 
health indicators across all 
system levels
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You are not alone …
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Conclusion

• Reliability must become a first-class citizen (again) 

• Proposals: 

• Learn from the non-HPC world 

• Responsibility must move 
upwards in the stack 

• Make uncertainty explicit,  
on all layers 

• „Work smarter“
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