Machine Learning with Neural Networks

GridKa School 2018 2018-08-29 | Markus Götz | KIT

Outline

- 1. Machine Learning Fundamentals
- 2. Neural Networks
- 3. Convolutional Neural Networks
- 4. Regression
- 5. Summary
- 6. Discussion

Machine Learning Fundamentals

Terminology

Why now?

- Technology revolution—vector processors (e.g. GPGPUs), auto-gradient software
- > Data availability—large, partially freely available, collections of labeled data
- Mathematical advances—latest addition, investigation of new model elements, e.g. activation functions, normalization

Learning Approaches

- Supervised learning: Learn by "mimicking supervisor", i.e. pattern annotations examples: image classification, stock forecasting
- Unsupervised learning: Determine patterns purely based on data examples: customer cluster analysis, distribution estimation
- Reinforcement learning: Pavlov-style learning with punishment and reward in dynamic environments examples: game Als, e.g. AlphaGo or Dota OpenAl

Terminology

- Samples or instances, individual observations in your data, e.g. an image, a specimen
- Features or attributes, single characteristic of a sample, e.g. a pixel, measured weight
- Channels or time, depth information, color channels, change over time

MNIST Dataset

- Goal for today: classification of handwritten digits
- ► 70000 images, each 28 × 28 pixels, gray-scale

Notation Disclaimer

- **Small letters:** vectors or matrices, e.g. *x* or *y*
- Hats: predictions or estimates, e.g. \hat{y}
- ▶ **Indices:** elements of vectors and matrices, e.g. *x_i*

• Data set: {samples, labels} = {x, y}

- Data set: $\{samples, labels\} = \{x, y\}$
- **Model:** definition $\hat{y} = wx + b$ with *w* and *b* trainable parameters

- Data set: $\{samples, labels\} = \{x, y\}$
- Model: definition $\hat{y} = wx + b$ with *w* and *b* trainable parameters
- Loss function: or cost/objective $J(w, b) = MSE(w, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$

- Data set: {samples, labels} = {x, y}
- **Model:** definition $\hat{y} = wx + b$ with *w* and *b* trainable parameters
- ► Loss function: or cost/objective $J(w, b) = MSE(w, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$
- **Train:** the model, e.g. optimization $\hat{w}, \hat{b} = \arg \min J(w, b)$

- Data set: {samples, labels} = {x, y}
- **Model:** definition $\hat{y} = wx + b$ with *w* and *b* trainable parameters
- ► Loss function: or cost/objective $J(w, b) = MSE(w, b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$
- ► **Train:** the model, e.g. optimization $\hat{w}, \hat{b} = \arg \min J(w, b)$

Basic recipe for most machine learning algorithms

Optimization: Gradient Descent

Iterative optimization technique, weight update in direction of negative gradient

$$w_{i+1} = w_i - lr \nabla_{w_i} J(w_i)$$

- Ir is learning rate, gradient update factor
- Stochastic gradient descent (SGD), sample subset (batch) updates

Bias Trick

- Cumbersome to keep track of weights w and bias b
- Idea: fuse both into single weight matrix

$$\hat{y} = Wx + b \leftrightarrow \hat{y} = Wx$$

$$\hat{y} = \begin{pmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}' \begin{pmatrix} x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,n} \end{pmatrix} + b \leftrightarrow \hat{y} = \begin{pmatrix} \mathbf{b} \\ w_1 \\ w_2 \\ \vdots \\ w_n \end{pmatrix}' \begin{pmatrix} \mathbf{1} \\ x_{i,1} \\ x_{i,2} \\ \vdots \\ x_{i,n} \end{pmatrix}$$

Pattern Recognition Types

- ► Regression: predict continuous value, e.g. stock price, y ∈ ℝ
- Classification: assign sample to a category, e.g. "spam"/"no spam" special form of regression, where y in fixed interval

Logistic Regression

- Squash linear regression output into fixed interval, e.g. y ∈ [0, 1]
- Interpretation: probability of sample belonging to a binary class
- sigmoid-/logistic function: $sig(z) = \frac{1}{1+e^{-x}}$
- Model: $h = sig(wx) = \frac{1}{1 + e^{-wx}}$
- ► Prediction: ŷ = 1 if h ≥ 0.5 ŷ = 0 if h < 0.5</p>

Logistic Regression

- Data set must be mapped
 - ► → 0
 - ► ▲ → 1
- Model: $h = sig(wx) = \frac{1}{1 + e^{-wx}}$
- ► Loss function: $J(w) = MSE(w) = \frac{1}{n} \sum_{i=1}^{n} (y - \hat{y})^2$ $\frac{dJ}{dw} = (\hat{y} - y) * (\hat{y} - \hat{y}^2) * x$
- Train: gradient descent optimization

Autograd Frameworks: TensorFlow & Co

- Numerical and autograd libraries
- Eager and flow graph computation
- Multiple supported devices
 CPU, GPU, TPU, smartphone
- TensorFlow (Google), MXNet (Amazon), PyTorch (Facebook)
- Keras—neural network wrapper for TensorFlow and MXNet backends

Keras an Example

```
from keras.models import Sequential
from keras.layers import Dense
```

```
# Logistic regression model with two features
model = Sequential()
model.add(Dense(1, input_dim=2, activation="sigmoid"))
```

```
# Model compilation
model.compile(loss="mse", optimizer="sgd")
```

```
# Fit the model, i.e. optimize J for 10 iterations
model.fit(x, y, epochs=10)
```

Exercise 1: Warm-up

Jupyter configuration

JURON login node -

Please close the JupyterLab service or click 'Logout' when you're done. If you just close the tab the process will still run on the HPC System.

	Kernel	Hub	Tabs	Settings	Help
	±	Control Panel			
					-
Last Modified					

Exercise 2: Logistic Regression

- Data set must be mapped
 - ► → 0
 - ► ▲ → 1
- Model: $h = sig(wx) = \frac{1}{1 + e^{-wx}}$
- ► Loss function: $J(w) = MSE(w) = (y - \hat{y})^2$ $\frac{dJ}{dw} = (\hat{y} - y) * (\hat{y} - \hat{y}^2) * x$
- Train: $w_{i+1} = w_i lr \frac{dJ}{dw_i}$
- https://jupyter-jsc.fz-juelich.de/

Neural Networks

- Binary exclusive operator, is 1 if one operand is 1, else 0
- Non-linearly separable, logistic regression cannot model problem
- Idea: decompose into linear problems

OR-gate

 $h_1 = sig(2x_1 + 2x_2 + 1)$

Fully-connected Neural Network

Input Hidden Output

- Inspired by biological neural network
- A neuron is a logistic regression
- Neurons are arranged in layers
- Layers are fully-connected with subsequent layer, also called Dense
- Width: neuron count
- Depth: layer count

Backpropagation

- Alternate forward and backward pass
- Hidden layer are nested functions
 - Requires chain rule for gradient
 - h'(x) = f'(g(x)) * g(x)
 - Neurons store forward result
- Weight initialization in network small random numbers
- Iterations are now called epochs

Activation Functions

- Activation functions a(x) introduce **non-linearity**, e.g. sigmoid function
- Other non-linear choices, e.g. tanh(x), relu(x) = max(0, x), etc.
- Better computational properties, e.g. avoid vanishing gradient

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any reasonable function to arbitrary precision with a finite number of nodes.

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any reasonable function to arbitrary precision with a finite number of nodes.

Good News

- Networks can perform highly complex tasks
- All necessary ingredients available

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can approximate any reasonable function to arbitrary precision with a finite number of nodes.

Good News

- Networks can perform highly complex tasks
- All necessary ingredients available

Bad News

- Does not specify number of necessary nodes
- No remarks on neuron connectivity

Deep Learning

- In practice: stacking layers works better
- **Deep learning:** more than one stage of non-linearities, e.g. layers

Multi-class Classification

Output

 Extension of binary classification concept

One-versus-all classification

- Build c binary classifiers
- Pick class with highest confidence/probability
- In neural networks
 - Create multiple networks
 - Add output neurons
Multi-class Classification

Multi-class classification recipe:

- One-hot class encoding: encode classes as sparse vectors $y = (y_1, y_2, ..., y_c)$, only one is active, e.g. class $2 \rightarrow (0, 1, ..., 0)$
- ► Softmax output activation: $\hat{y} = softmax(z) = \frac{e^{c_j}}{\sum_j e^{c_j}}$ for j = 1...cachieve joint-probability of 1, normalize across model outputs *z*
- ► **Cross-entropy loss:** convex-function $J(w) = \frac{1}{n} \sum_{i=1}^{n} \sum_{j=1}^{c} y_{i,j} \log \hat{y}_{i,j}$ maximum likelihood principle

Over- and Underfitting

Over- and Underfitting

- How do we know a network is not over- or underfitting?
- Idea: simulate "unseen" data
- Split data artificially into disjoint subsets
 - ► **Training set** for training the model (usually 60% 80%)
 - Validation set for fine tunine the model (usually 20%)
 - ► Test set to test validation (usually 20% 40%)

Over- and Underfitting

- Separate monitoring of training and test loss during training
- ► Training loss will decrease indefinitely J → 0, memorization effect
- Test loss minimum is optimal

Regularization

Methods to avoid overfitting, reduced validation error, might increase train error

- More data
- Augment: generate artificially new samples (add noise, translate, ...)
- Early stopping: monitoring of train and test loss, stop at optimum
- Penalize large weights: add a penalty term
- Dropout neurons
- Batch Normalization neurons

Penalty Terms

- Weights can become increasingly large, allowing overfitting
- Idea: penalize large weights
- Minimize function $J^*(w) = J(w) + \lambda \Omega(w)$
- $\Omega(w)$ is measure of weight magnitude
- λ is scale for $\Omega(w)$
 - $J(w) \gg \lambda \Omega(w)$ —no regularization
 - $J(w) \ll \lambda \Omega(w)$ —no training

L1- and L2-Norm

- L1-Norm, also LASSO
 - $||w||_1 = (w_1 + w_2 + \cdots + w_f)$
 - All weights contribute to loss
 - Encourages sparsity
- L2-Norm, also weight decay
 - $\|w\|_2^2 = (w_1^2 + w_2^2 + \dots + w_f^2)$
 - Penalizes large weights
 - Discourages sparsity

Dropout

- ▶ Randomly turn of neurons and connection, e.g. p(drop) = 0.5
- Equivalent to network regularization (proof omitted)

Neural Networks in Keras

```
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.regularizers import 12
classes, features = 10, 200
# Fully-connected neural network
model = Sequential()
model.add(Dense(16, input_dim=features, activation="tanh"))
model.add(Dense(16, kernel_regularizer=12(0.02))
model.add(Dropout(0.1))
model.add(Dense(classes, activation='softmax'))
```

Model compilation
model.compile(loss="categorical_crossentropy", optimizer="sgd")

Exercise 3: FNN MNIST Image Classification

Convolutional Neural Networks

Computer Vision

© Catste

- Easy for humans, hard for machines
- High input dimensionality $\mathbb{R}/\mathbb{N}^{10^1-10^8}$
- Have to deal with POV-shifts, light variation, occlusion, shape variation
- Classical computer vision answer:
 - Inclusion of context information
 - Usage of image filters
- Idea: combine with machine learning

- Element-wise weighted sum of input and filter
- $(f * g)[n] = \sum_{m=-\infty}^{\infty} f[m]g[n-m]$
- Stride: pixel distance for slide
- Filter size: window size of convolution kernel
- ▶ 2D input: volume of *width* × *height*(×*channels*)
- Models effects on images, e.g. edge detection
- In CNN: model "eye", sparse weight sharing

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	1
0	104	104	104	100	98	

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

320			

Image Matrix

0 * 0 + 0 * -1 + 0 * 0+0 * -1 + 105 * 5 + 102 * -1 +0 * 0 + 103 * -1 + 99 * 0 = 320

Output Matrix

Convolution with horizontal and vertical strides = 1

© Machine Learning Guru

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	6
0	104	104	104	100	98	

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

320	206			
			I	

Image Matrix

0 * 0 + 0 * -1 + 0 * 0+105 * -1 + 102 * 5 + 100 * -1 +103 * 0 + 99 * -1 + 103 * 0 = 206

Output Matrix

Convolution with horizontal and vertical strides = 1

© Machine Learning Guru

0	0	0	0	0	0	
0	105	102	100	97	96	
0	103	99	103	101	102	
0	101	98	104	102	100	
0	99	101	106	104	99	ſ
0	104	104	104	100	98	4

Kernel Matrix

0	-1	0
-1	5	-1
0	-1	0

320	206	198		

Image Matrix

0 * 0 + 0 * -1 + 0 * 0+102 * -1 + 100 * 5 + 97 * -1 +99 * 0 + 103 * -1 + 101 * 0 = 198

Output Matrix

Convolution with horizontal and vertical strides = 1

© Machine Learning Guru

Pooling

- Pooling reduces input sizes, abstract downsampled copy
- Pool size: kernel height/width
- Strides: step width
- Typical pooling layers
 - Max Pooling
 - Average Pooling

1	1	3	4	
3	2	1	0	
4	6	7	8	
1	1	2	4	-
		2 imes 2 Ma	x Pooling	, stride 2 $ imes$ 2
	3	4		
	6	8		

Convolutional Neural Network Pyramid

Batch Normalization

- Idea: standardize layer outputs
- Training time
 - Calculate batch mean μ_B and standard deviation σ_B
 - \blacktriangleright Track rolling values μ and σ
 - Normalize by $\frac{\chi \mu_B}{\sigma_B}$
- Prediction time
 - Track μ_B and σ_B for covariate shift
 - Add one degree of freedom
- Regularizes network

Optimizers

- Learning rate strongly impacts training
- ► Value for *Ir*
 - high: jumpy, no convergence
 - Iow: slow training, local minima
- Earlier approach
 - stop training every e epochs
 - Iower Ir
 - continue training

Optimizers

- Various flavors of SGD
- Include gradient momentum
 - Accelerate previous gradient
 - $J_{t+1}^*(w) = \alpha J_t^*(w) lr \nabla J_t(w)$
- Adaptive learning rate
 - Implemented in Adagrad
 - Learning rate Ir_i for each weight w_i

$$\blacktriangleright W_{i+1} = W_i \frac{lr_{t,i}}{\sqrt{\sum_{i=1}^{\infty} \nabla_{w_i} J_{t-i}(w_i)^2}} \nabla_{w_i} J_t(w_i)$$

Optimizers

- **RMSprop:** enhanced Adagrad
 - Learning rate got infinitely small
 - Forgetting factor β for past gradients
- More intricate variants: Nesterov momentum, Adadelta, Nadam, ...
- Some non-SGD alternatives
 - Particle-swarm optimization (PSO)
 - BFGS

© Machine Learning Mastery

Hyperparameter Optimization

Hyperparameters are all non-weight parameters

- Optimization algorithm
- Learning rate
- Regularization
- Network layer count
- Network neurons
- ▶ ...
- Some can be inferred through thought
- Rest: trial and error

Hyperparameter Optimization

- Naïve approaches
 - Grid search
 - Random search
- Search algorithms
 - Kriging-based (hyperopt, Vizier)
 - Particle-swarm optimization
 - Genetic algorithms
- Meta-learning: use NN to find NN

random search

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

© Oren Kraus

- Main image recognition benchmark
- Natural image collection, 14m samples
- Presented in 2009
- Since 2010, annual prediction competition
 - Image classification
 - Object localization
 - Scene detection

Monda

ILSVRC Results

Inception

auxiliary classifiers

© Joe Marino

Inception

- Winner of ILSVRC 2014
- Repeating same kernels
- Idea: repeating Inception module
- Core concept
 - Cheap non-linearities (1 × 1 convolution)
 - Different resolution scales

ResNet

© Medium

Residual Unit

- Winner of ILSVRC 2015
- Ultra deep network (152 layers)
- Idea: nested mini networks
 - Learn residuals and add to input
 - Unused units do nothing
- First time, humans have been surpassed

Deep Learning Issues

- GPU memory size: forward and backward passes need to be stored network parameters need to be stored Counter by decreasing batch sizes, use multipe GPUs
- Vanishing and shattered gradients: gradients become too small or noise the deeper you stack the network
- Debugging: almost impossible to understand what each components does Some tools available: Influence functions, layer output investigation

CNNs in Keras

```
from keras.models import Sequential
from keras.layers import BatchNormalization, Conv2D,
                         Dense, MaxPooling2D
from keras.regularizers import 12
# Convolutional neural network
w, h, c = 128, 128, 1 \# width, height, channels
model = Sequential()
model.add(Conv2D(16, (5, 5), padding="same", input shape=(w, h, c))}
model.add(MaxPooling2D((2, 2), strides=(1, 1))}
model.add(BatchNormalization()) }
model.add (Dense (128)
model.add(Dense(classes, activation='softmax'))
```

Model compilation
model.compile(loss="categorical_crossentropy", optimizer="sgd")

Keras Functional API

```
from keras.models import Model
from keras.layers import Dense, Input
features = 20
data = Input(shape=(features,))
# layers can be connected by calling the previous layer
layer_1 = Dense(64)(data)
layer_2 = Dense(64)(layer_1)
predict = Dense(10, activation="softmax")(layer_2)
```

the model must be created manually model = Model(inputs=[data], outputs=[predict])

Exercise 4: CNN MNIST Image Classification

Regression

Abalone Dataset

- Collected by the University of Tasmania, Australia
- Abalones are "sea snails"
- 4177 instances, each 9 features
- Prediction task
 - ▶ Regress age (*rings* + 1.5) of abalone
 - Requires manual preprocessing
 - Reduce microscopy cost and labor

© UCI Machine Learning Repository
Exercise 5: Abalone Age Regression Analysis

© Garnelaxia

Summary

Supervised machine learning

- Logistic regression
- Fully-connected neural networks (FNN)
- Convolution neural networks (CNN)
- Network components
 - Activation functions
 - Regularization
 - Optimizers
- Application scenarios, regression and classification

What's more?

- Data augmentation: artificial data increase through rotation, scaling, translation, etc. to better abstract patterns and increase data set size
- Embedding: lower-dimensional representation of (sparse) input data
- Capsule Networks: hierarchy and translation-aware neural networks
- Recurrent Neural Networks (RNN): sequence-learning neural networks, e.g natural language processing and time series analysis
- ► Attention: learning "where to look", e.g. for natural language translation

Acknowledgment

Eileen Kühn

- GridKa School organization
- Paperwork
- Oskar Taubert
 - Assignment preparation
 - Exercise supervision

Andreas Herten

- Access to JURON
- Technical support

Discussion