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Machine Learning Fundamentals
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Terminology

Artificial
Intelligence (AI)
e.g. rule-based system

Machine
Learning
e.g. Logistic
Regression

Deep Learning
e.g. Convolutional
Neural Networks
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Why now?

I Technology revolution—vector processors (e.g. GPGPUs), auto-gradient software

I Data availability—large, partially freely available, collections of labeled data

I Mathematical advances—latest addition, investigation of new model elements, e.g.
activation functions, normalization
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5

Learning Approaches

I Supervised learning: Learn by “mimicking supervisor”, i.e. pattern annotations
examples: image classification, stock forecasting

I Unsupervised learning: Determine patterns purely based on data
examples: customer cluster analysis, distribution estimation

I Reinforcement learning: Pavlov-style learning with punishment and reward in
dynamic environments
examples: game AIs, e.g. AlphaGo or Dota OpenAI
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Terminology

I Samples or instances,
individual observations in your data,
e.g. an image, a specimen

I Features or attributes,
single characteristic of a sample,
e.g. a pixel, measured weight

I Channels or time,
depth information,
color channels, change over time
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MNIST Dataset

I Goal for today: classification of handwritten digits

I 70000 images, each 28× 28 pixels, gray-scale
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Notation Disclaimer

I Small letters: vectors or matrices, e.g. x or y

I Hats: predictions or estimates, e.g. ŷ

I Indices: elements of vectors and matrices, e.g. xi

Machine Learning with Neural Networks Markus Götz
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Linear Regression

data

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
2

I Train: the model, e.g. optimization
ŵ , b̂ = arg min J(w ,b)

I Basic recipe for most machine learning algorithms
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9

Linear Regression

data

model

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
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with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
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Optimization: Gradient Descent

I Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − lr∇wi J(wi)

w1

w2

ws

data

x

y

lr dJ
dw

w1 w2 ws w

J

I lr is learning rate, gradient update factor

I Stochastic gradient descent (SGD), sample subset (batch) updates
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Bias Trick

I Cumbersome to keep track of weights w and bias b

I Idea: fuse both into single weight matrix

ŷ = wx +b ↔ŷ = wx

ŷ =


w1
w2
...

wn


′

xi,1
xi,2

...
xi,n

+b ↔ŷ =


b

w1
w2
...

wn


′

1
xi,1
xi,2

...
xi,n
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Pattern Recognition Types

I Regression: predict continuous
value, e.g. stock price, y ∈ R

I Classification: assign sample to a
category, e.g. “spam”/“no spam”
special form of regression,
where y in fixed interval

x1

x2
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Logistic Regression

−4 −2 2 4

0.5

1

y = sig(x)

x

y

I Squash linear regression output into
fixed interval, e.g. y ∈ [0,1]

I Interpretation: probability of sample
belonging to a binary class

I sigmoid-/logistic function:
sig(z) = 1

1+e−x

I Model: h = sig(wx) = 1
1+e−wx

I Prediction: ŷ = 1 if h ≥ 0.5
ŷ = 0 if h < 0.5
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Logistic Regression

I Data set must be mapped
I → 0

I → 1

I Model: h = sig(wx) = 1
1+e−wx

I Loss function:
J(w) = MSE(w) = 1

n
∑n

i=1(y − ŷ)2

dJ
dw = (ŷ − y) ∗ (ŷ − ŷ2) ∗ x

I Train: gradient descent optimization −4 −2 2 4

0.5

1

wx

ŷ
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Autograd Frameworks: TensorFlow & Co

I Numerical and autograd libraries

I Eager and flow graph computation

I Multiple supported devices
CPU, GPU, TPU, smartphone

I TensorFlow (Google), MXNet
(Amazon), PyTorch (Facebook)

I Keras—neural network wrapper for
TensorFlow and MXNet backends

© Google

© Apache

© PyTorch

© Keras
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Keras an Example

from keras.models import Sequential
from keras.layers import Dense

# Logistic regression model with two features
model = Sequential()
model.add(Dense(1, input_dim=2, activation="sigmoid"))

# Model compilation
model.compile(loss="mse", optimizer="sgd")

# Fit the model, i.e. optimize J for 10 iterations
model.fit(x, y, epochs=10)
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Exercise 1: Warm-up
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Exercise 2: Logistic Regression

I Data set must be mapped
I → 0

I → 1

I Model: h = sig(wx) = 1
1+e−wx

I Loss function:
J(w) = MSE(w) = (y − ŷ)2

dJ
dw = (ŷ − y) ∗ (ŷ − ŷ2) ∗ x

I Train: wi+1 = wi − lr dJ
dwi

I https://jupyter-jsc.fz-juelich.de/

x1

x2
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https://jupyter-jsc.fz-juelich.de/


19

Neural Networks
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XOR-Problem

0 0.5 1

0

0.5

1

x1

x 2

I Binary exclusive operator,
is 1 if one operand is 1, else 0

I Non-linearly separable,
logistic regression cannot model
problem

I Idea: decompose into linear problems

Machine Learning with Neural Networks Markus Götz
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XOR-Problem

0 0.5 1
0

0.5

1

x1

x 2

OR-gate

h1 = sig(2x1 + 2x2 + 1)
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XOR-Problem

0 0.5 1
0

0.5

1

x1

x 2

0 0.5 1
x1
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XOR-Problem

0 0.5 1
0

0.5

1

x1

x 2

0 0.5 1
x1

0 0.5 1
x1

OR-gate

h1 = sig(2x1 + 2x2 + 1)

NAND-gate

h2 = sig(−2x1 − 2x2 − 1.5)

AND-gate

ŷ = sig(2h1 + 2h2 + 3)
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Fully-connected Neural Network

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

Logistic
Regression

I Inspired by biological neural network

I A neuron is a logistic regression

I Neurons are arranged in layers

I Layers are fully-connected with
subsequent layer, also called Dense

I Width: neuron count

I Depth: layer count
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Backpropagation

I Alternate forward and backward pass

I Hidden layer are nested functions
I Requires chain rule for gradient

I h′(x) = f ′(g(x)) ∗ g(x)

I Neurons store forward result

I Weight initialization in network
small random numbers

I Iterations are now called epochs

x1

x2

h1

h2

h3

ŷ

Input Hidden Output
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Activation Functions

I Activation functions a(x) introduce non-linearity, e.g. sigmoid function

I Other non-linear choices, e.g. tanh(x), relu(x) = max(0, x), etc.

I Better computational properties, e.g. avoid vanishing gradient

−2 −1 0 1 2
−2
−1

0
1
2

x

a(
x)

sigmoid

−2 −1 0 1 2
x

tanh

−2 −1 0 1 2
x

ReLU

−2 −1 0 1 2
x

SeLU
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Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

I Good News
I Networks can perform highly complex tasks

I All necessary ingredients available

I Bad News
I Does not specify number of necessary nodes

I No remarks on neuron connectivity
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25

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

I Good News
I Networks can perform highly complex tasks

I All necessary ingredients available

I Bad News
I Does not specify number of necessary nodes

I No remarks on neuron connectivity

Machine Learning with Neural Networks Markus Götz
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Deep Learning

I In practice: stacking layers works better

I Deep learning: more than one stage of non-linearities, e.g. layers

hand-designed
program

hand-designed
features

features

simple features

mapping

mapping

abstract
features

mapping

Input Output

Rule-based system

Machine learning

Deep learning

machine learned
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Multi-class Classification

x1

x2

x3

x4

h1

h2

h3

h4

ŷ1

ŷ2

ŷ3

Input Hidden Output

I Extension of binary classification
concept

I One-versus-all classification
I Build c binary classifiers

I Pick class with highest
confidence/probability

I In neural networks
I Create multiple networks

I Add output neurons
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Multi-class Classification

Multi-class classification recipe:

I One-hot class encoding: encode classes as sparse vectors
y = (y1, y2, ..., yc), only one is active, e.g. class 2→ (0,1, ...,0)

I Softmax output activation: ŷ = softmax(z) = ezj∑
j ezj for j = 1...c

achieve joint-probability of 1, normalize across model outputs z

I Cross-entropy loss: convex-function J(w) = 1
n
∑n

i=1
∑c

j yi,j log ŷi,j
maximum likelihood principle
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Over- and Underfitting

degree=0
y

degree=3

x

y
degree=1

degree=9

x
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Over- and Underfitting

I How do we know a network is not over- or underfitting?

I Idea: simulate “unseen” data

I Split data artificially into disjoint subsets
I Training set for training the model (usually 60%− 80%)

I Validation set for fine tunine the model (usually 20%)

I Test set to test validation (usually 20%− 40%)
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Over- and Underfitting

Test loss

Training loss

Optimum

epoch

J
I Separate monitoring of training and

test loss during training

I Training loss will decrease indefinitely
J → 0, memorization effect

I Test loss minimum is optimal
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Regularization

Methods to avoid overfitting, reduced validation error, might increase train error

I More data

I Augment: generate artificially new samples (add noise, translate, ...)

I Early stopping: monitoring of train and test loss, stop at optimum

I Penalize large weights: add a penalty term

I Dropout neurons

I Batch Normalization neurons
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Penalty Terms

I Weights can become increasingly large, allowing overfitting

I Idea: penalize large weights

I Minimize function J∗(w) = J(w) + λΩ(w)

I Ω(w) is measure of weight magnitude

I λ is scale for Ω(w)
I J(w)� λΩ(w)—no regularization

I J(w)� λΩ(w)—no training
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L1- and L2-Norm

I L1-Norm, also LASSO
I ‖w‖1 = (w1 + w2 + · · ·+ wf )

I All weights contribute to loss

I Encourages sparsity

I L2-Norm, also weight decay
I ‖w‖2

2 = (w2
1 + w2

2 + · · ·+ w2
f )

I Penalizes large weights

I Discourages sparsity

w1

w2

w1

w2
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Dropout

I Randomly turn of neurons and connection, e.g. p(drop) = 0.5

I Equivalent to network regularization (proof omitted)

x1

x2

x3

x4

h1

h2

h3

h4

ŷ

Input Hidden Output

x1

x3

h2

h3

ŷ

Input Hidden Output
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Neural Networks in Keras

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.regularizers import l2

classes, features = 10, 200

# Fully-connected neural network
model = Sequential()
model.add(Dense(16, input_dim=features, activation="tanh"))
model.add(Dense(16, kernel_regularizer=l2(0.02))
model.add(Dropout(0.1))
model.add(Dense(classes, activation=’softmax’))

# Model compilation
model.compile(loss="categorical_crossentropy", optimizer="sgd")

Machine Learning with Neural Networks Markus Götz
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Exercise 3: FNN MNIST Image Classification
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Convolutional Neural Networks
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Computer Vision

© Catster

I Easy for humans, hard for machines

I High input dimensionality R/N101−108

I Have to deal with POV-shifts, light
variation, occlusion, shape variation

I Classical computer vision answer:
I Inclusion of context information

I Usage of image filters

I Idea: combine with machine learning
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Discrete Convolution

I Element-wise weighted sum of input and filter

I (f ∗ g)[n] =
∑∞

m=−∞ f [m]g[n −m]

I Stride: pixel distance for slide

I Filter size: window size of convolution kernel

I 2D input: volume of width × height(×channels)

I Models effects on images, e.g. edge detection

I In CNN: model “eye”, sparse weight sharing
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Discrete Convolution

© Machine Learning Guru
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Discrete Convolution

© Machine Learning Guru
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Discrete Convolution

© Machine Learning Guru
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Pooling

I Pooling reduces input sizes,
abstract downsampled copy

I Pool size: kernel height/width

I Strides: step width

I Typical pooling layers
I Max Pooling

I Average Pooling

1 1

4 6

2 4

7 8

3 2

1 1

1 0

3 4

6 8

3 4

2 × 2 Max Pooling, stride 2 × 2
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Convolutional Neural Network Pyramid

© Medium
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Batch Normalization

I Idea: standardize layer outputs

I Training time
I Calculate batch mean µB and

standard deviation σB

I Track rolling values µ and σ

I Normalize by x−µB
σB

I Prediction time
I Track µB and σB for covariate shift

I Add one degree of freedom

I Regularizes network

µB

x

ŷ
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Optimizers

high
optimal

too low

too high

epoch

J
I Learning rate strongly impacts training

I Value for lr
I high: jumpy, no convergence

I low: slow training, local minima

I Earlier approach
I stop training every e epochs

I lower lr

I continue training
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Optimizers

I Various flavors of SGD

I Include gradient momentum
I Accelerate previous gradient

I J∗t+1(w) = αJ∗t (w)− lr∇Jt (w)

I Adaptive learning rate
I Implemented in Adagrad

I Learning rate lri for each weight wi

I wi+1 = wi
lrt,i√∑∞

i=1∇wi Jt−i (wi )2
∇wi Jt (wi )

w1

w2

w1

w2
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Optimizers

© Machine Learning Mastery

I RMSprop: enhanced Adagrad
I Learning rate got infinitely small

I Forgetting factor β for past gradients

I More intricate variants: Nesterov
momentum, Adadelta, Nadam, . . .

I Some non-SGD alternatives
I Particle-swarm optimization (PSO)

I BFGS
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Hyperparameter Optimization

I Hyperparameters are all non-weight parameters
I Optimization algorithm

I Learning rate

I Regularization

I Network layer count

I Network neurons

I . . .

I Some can be inferred through thought

I Rest: trial and error
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Hyperparameter Optimization

I Naı̈ve approaches
I Grid search

I Random search

I Search algorithms
I Kriging-based (hyperopt, Vizier)

I Particle-swarm optimization

I Genetic algorithms

I Meta-learning: use NN to find NN

x 2

grid search

x1

x 2

random search
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ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

© Oren Kraus

I Main image recognition benchmark

I Natural image collection, 14m
samples

I Presented in 2009

I Since 2010, annual prediction
competition

I Image classification

I Object localization

I Scene detection

Machine Learning with Neural Networks Markus Götz
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ILSVRC Results

ILSVRC10 ILSVRC11 AlexNet ILSVRC13 VGG Inception ResNet
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Inception

© Joe Marino
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Inception

I Winner of ILSVRC 2014

I Repeating same kernels

I Idea: repeating Inception
module

I Core concept
I Cheap non-linearities

(1× 1 convolution)

I Different resolution scales

Concatenation

1x1 convolution 3x3 convolution 5x5 convolution 1x1 convolution

1x1 convolution 1x1 convolution 3x3 max pooling

Previous layer

Inception Module

Machine Learning with Neural Networks Markus Götz
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ResNet

© Medium
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Residual Unit

I Winner of ILSVRC 2015

I Ultra deep network (152 layers)

I Idea: nested mini networks
I Learn residuals and add to input

I Unused units do nothing

I First time, humans have been
surpassed

Next layer

ReLU

Addition

BatchNorm

Convolution

ReLU

BatchNorm

Convolution

Previous layer

Residual Unit
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Deep Learning Issues

I GPU memory size: forward and backward passes need to be stored
network parameters need to be stored
Counter by decreasing batch sizes, use multipe GPUs

I Vanishing and shattered gradients: gradients become too small or noise the
deeper you stack the network

I Debugging: almost impossible to understand what each components does
Some tools available: Influence functions, layer output investigation
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CNNs in Keras

from keras.models import Sequential
from keras.layers import BatchNormalization, Conv2D,

Dense, MaxPooling2D
from keras.regularizers import l2

# Convolutional neural network
w, h, c = 128, 128, 1 # width, height, channels
model = Sequential()
model.add(Conv2D(16, (5, 5), padding="same", input_shape=(w, h, c))}
model.add(MaxPooling2D((2, 2), strides=(1, 1))}
model.add(BatchNormalization())}
model.add(Dense(128)
model.add(Dense(classes, activation=’softmax’))

# Model compilation
model.compile(loss="categorical_crossentropy", optimizer="sgd")
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Keras Functional API

from keras.models import Model
from keras.layers import Dense, Input

features = 20
data = Input(shape=(features,))

# layers can be connected by calling the previous layer
layer_1 = Dense(64)(data)
layer_2 = Dense(64)(layer_1)
predict = Dense(10, activation="softmax")(layer_2)

# the model must be created manually
model = Model(inputs=[data], outputs=[predict])
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Exercise 4: CNN MNIST Image Classification
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Regression
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Abalone Dataset

I Collected by the University of
Tasmania, Australia

I Abalones are “sea snails”

I 4177 instances, each 9 features

I Prediction task
I Regress age (rings + 1.5) of abalone

I Requires manual preprocessing

I Reduce microscopy cost and labor
© UCI Machine Learning Repository
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Exercise 5: Abalone Age Regression Analysis

© Garnelaxia
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Summary
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Summary

I Supervised machine learning
I Logistic regression

I Fully-connected neural networks (FNN)

I Convolution neural networks (CNN)

I Network components
I Activation functions

I Regularization

I Optimizers

I Application scenarios, regression and classification
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What’s more?

I Data augmentation: artificial data increase through rotation, scaling,
translation, etc. to better abstract patterns and increase data set size

I Embedding: lower-dimensional representation of (sparse) input data

I Capsule Networks: hierarchy and translation-aware neural networks

I Recurrent Neural Networks (RNN): sequence-learning neural networks,
e.g natural language processing and time series analysis

I Attention: learning “where to look”, e.g. for natural language translation
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67

Discussion
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	Machine Learning Fundamentals
	AI and Machine Learning
	Logistic Regression
	Libraries
	Exercise: Logistic Regression

	Neural Networks
	Motivation
	Backpropagation
	Multi-class Classification
	Generalization
	Exercise: MNIST FNN

	Convolutional Neural Networks
	Deep Learning
	Discrete Convolution
	Network Architectures
	Exercise: MNIST CNN

	Regression
	Exercise: Abalone

	Summary
	Discussion

