
0

Machine Learning with Neural Networks
GridKa School 2018
2018-08-29 Markus Götz KIT

1

Outline

1. Machine Learning Fundamentals

2. Neural Networks

3. Convolutional Neural Networks

4. Regression

5. Summary

6. Discussion

Machine Learning with Neural Networks Markus Götz

2

Machine Learning Fundamentals

Machine Learning with Neural Networks Markus Götz

3

Terminology

Artificial
Intelligence (AI)
e.g. rule-based system

Machine
Learning
e.g. Logistic
Regression

Deep Learning
e.g. Convolutional
Neural Networks

Machine Learning with Neural Networks Markus Götz

4

Why now?

I Technology revolution—vector processors (e.g. GPGPUs), auto-gradient software

I Data availability—large, partially freely available, collections of labeled data

I Mathematical advances—latest addition, investigation of new model elements, e.g.
activation functions, normalization

Machine Learning with Neural Networks Markus Götz

5

Learning Approaches

I Supervised learning: Learn by “mimicking supervisor”, i.e. pattern annotations
examples: image classification, stock forecasting

I Unsupervised learning: Determine patterns purely based on data
examples: customer cluster analysis, distribution estimation

I Reinforcement learning: Pavlov-style learning with punishment and reward in
dynamic environments
examples: game AIs, e.g. AlphaGo or Dota OpenAI

Machine Learning with Neural Networks Markus Götz

6

Terminology

I Samples or instances,
individual observations in your data,
e.g. an image, a specimen

I Features or attributes,
single characteristic of a sample,
e.g. a pixel, measured weight

I Channels or time,
depth information,
color channels, change over time

Machine Learning with Neural Networks Markus Götz

7

MNIST Dataset

I Goal for today: classification of handwritten digits

I 70000 images, each 28× 28 pixels, gray-scale

Machine Learning with Neural Networks Markus Götz

8

Notation Disclaimer

I Small letters: vectors or matrices, e.g. x or y

I Hats: predictions or estimates, e.g. ŷ

I Indices: elements of vectors and matrices, e.g. xi

Machine Learning with Neural Networks Markus Götz

9

Linear Regression

data

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
2

I Train: the model, e.g. optimization
ŵ , b̂ = arg min J(w ,b)

I Basic recipe for most machine learning algorithms

Machine Learning with Neural Networks Markus Götz

9

Linear Regression

data

model

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
2

I Train: the model, e.g. optimization
ŵ , b̂ = arg min J(w ,b)

I Basic recipe for most machine learning algorithms

Machine Learning with Neural Networks Markus Götz

9

Linear Regression

data

model

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
2

I Train: the model, e.g. optimization
ŵ , b̂ = arg min J(w ,b)

I Basic recipe for most machine learning algorithms

Machine Learning with Neural Networks Markus Götz

9

Linear Regression

data

model

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
2

I Train: the model, e.g. optimization
ŵ , b̂ = arg min J(w ,b)

I Basic recipe for most machine learning algorithms

Machine Learning with Neural Networks Markus Götz

9

Linear Regression

data

model

x

y
I Data set: {samples, labels} = {x , y}

I Model: definition ŷ = wx + b
with w and b trainable parameters

I Loss function: or cost/objective
J(w ,b) = MSE(w ,b) = 1

N
∑N

i=1(yi − ŷi)
2

I Train: the model, e.g. optimization
ŵ , b̂ = arg min J(w ,b)

I Basic recipe for most machine learning algorithms

Machine Learning with Neural Networks Markus Götz

10

Optimization: Gradient Descent

I Iterative optimization technique, weight update in direction of negative gradient

wi+1 = wi − lr∇wi J(wi)

w1

w2

ws

data

x

y

lr dJ
dw

w1 w2 ws w

J

I lr is learning rate, gradient update factor

I Stochastic gradient descent (SGD), sample subset (batch) updates

Machine Learning with Neural Networks Markus Götz

11

Bias Trick

I Cumbersome to keep track of weights w and bias b

I Idea: fuse both into single weight matrix

ŷ = wx +b ↔ŷ = wx

ŷ =

w1
w2
...

wn

′

xi,1
xi,2

...
xi,n

+b ↔ŷ =

b

w1
w2
...

wn

′

1
xi,1
xi,2

...
xi,n

Machine Learning with Neural Networks Markus Götz

12

Pattern Recognition Types

I Regression: predict continuous
value, e.g. stock price, y ∈ R

I Classification: assign sample to a
category, e.g. “spam”/“no spam”
special form of regression,
where y in fixed interval

x1

x2

Machine Learning with Neural Networks Markus Götz

13

Logistic Regression

−4 −2 2 4

0.5

1

y = sig(x)

x

y

I Squash linear regression output into
fixed interval, e.g. y ∈ [0,1]

I Interpretation: probability of sample
belonging to a binary class

I sigmoid-/logistic function:
sig(z) = 1

1+e−x

I Model: h = sig(wx) = 1
1+e−wx

I Prediction: ŷ = 1 if h ≥ 0.5
ŷ = 0 if h < 0.5

Machine Learning with Neural Networks Markus Götz

14

Logistic Regression

I Data set must be mapped
I → 0

I → 1

I Model: h = sig(wx) = 1
1+e−wx

I Loss function:
J(w) = MSE(w) = 1

n
∑n

i=1(y − ŷ)2

dJ
dw = (ŷ − y) ∗ (ŷ − ŷ2) ∗ x

I Train: gradient descent optimization −4 −2 2 4

0.5

1

wx

ŷ

Machine Learning with Neural Networks Markus Götz

15

Autograd Frameworks: TensorFlow & Co

I Numerical and autograd libraries

I Eager and flow graph computation

I Multiple supported devices
CPU, GPU, TPU, smartphone

I TensorFlow (Google), MXNet
(Amazon), PyTorch (Facebook)

I Keras—neural network wrapper for
TensorFlow and MXNet backends

© Google

© Apache

© PyTorch

© Keras

Machine Learning with Neural Networks Markus Götz

16

Keras an Example

from keras.models import Sequential
from keras.layers import Dense

Logistic regression model with two features
model = Sequential()
model.add(Dense(1, input_dim=2, activation="sigmoid"))

Model compilation
model.compile(loss="mse", optimizer="sgd")

Fit the model, i.e. optimize J for 10 iterations
model.fit(x, y, epochs=10)

Machine Learning with Neural Networks Markus Götz

17

Exercise 1: Warm-up

Machine Learning with Neural Networks Markus Götz

18

Exercise 2: Logistic Regression

I Data set must be mapped
I → 0

I → 1

I Model: h = sig(wx) = 1
1+e−wx

I Loss function:
J(w) = MSE(w) = (y − ŷ)2

dJ
dw = (ŷ − y) ∗ (ŷ − ŷ2) ∗ x

I Train: wi+1 = wi − lr dJ
dwi

I https://jupyter-jsc.fz-juelich.de/

x1

x2

Machine Learning with Neural Networks Markus Götz

https://jupyter-jsc.fz-juelich.de/

19

Neural Networks

Machine Learning with Neural Networks Markus Götz

20

XOR-Problem

0 0.5 1

0

0.5

1

x1

x 2

I Binary exclusive operator,
is 1 if one operand is 1, else 0

I Non-linearly separable,
logistic regression cannot model
problem

I Idea: decompose into linear problems

Machine Learning with Neural Networks Markus Götz

21

XOR-Problem

0 0.5 1
0

0.5

1

x1

x 2

OR-gate

h1 = sig(2x1 + 2x2 + 1)

Machine Learning with Neural Networks Markus Götz

21

XOR-Problem

0 0.5 1
0

0.5

1

x1

x 2

0 0.5 1
x1

OR-gate

h1 = sig(2x1 + 2x2 + 1)

NAND-gate

h2 = sig(−2x1 − 2x2 − 1.5)

Machine Learning with Neural Networks Markus Götz

21

XOR-Problem

0 0.5 1
0

0.5

1

x1

x 2

0 0.5 1
x1

0 0.5 1
x1

OR-gate

h1 = sig(2x1 + 2x2 + 1)

NAND-gate

h2 = sig(−2x1 − 2x2 − 1.5)

AND-gate

ŷ = sig(2h1 + 2h2 + 3)

Machine Learning with Neural Networks Markus Götz

22

Fully-connected Neural Network

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

Logistic
Regression

I Inspired by biological neural network

I A neuron is a logistic regression

I Neurons are arranged in layers

I Layers are fully-connected with
subsequent layer, also called Dense

I Width: neuron count

I Depth: layer count

Machine Learning with Neural Networks Markus Götz

23

Backpropagation

I Alternate forward and backward pass

I Hidden layer are nested functions
I Requires chain rule for gradient

I h′(x) = f ′(g(x)) ∗ g(x)

I Neurons store forward result

I Weight initialization in network
small random numbers

I Iterations are now called epochs

x1

x2

h1

h2

h3

ŷ

Input Hidden Output

Machine Learning with Neural Networks Markus Götz

24

Activation Functions

I Activation functions a(x) introduce non-linearity, e.g. sigmoid function

I Other non-linear choices, e.g. tanh(x), relu(x) = max(0, x), etc.

I Better computational properties, e.g. avoid vanishing gradient

−2 −1 0 1 2
−2
−1

0
1
2

x

a(
x)

sigmoid

−2 −1 0 1 2
x

tanh

−2 −1 0 1 2
x

ReLU

−2 −1 0 1 2
x

SeLU

Machine Learning with Neural Networks Markus Götz

25

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

I Good News
I Networks can perform highly complex tasks

I All necessary ingredients available

I Bad News
I Does not specify number of necessary nodes

I No remarks on neuron connectivity

Machine Learning with Neural Networks Markus Götz

25

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

I Good News
I Networks can perform highly complex tasks

I All necessary ingredients available

I Bad News
I Does not specify number of necessary nodes

I No remarks on neuron connectivity

Machine Learning with Neural Networks Markus Götz

25

Universal Approximation Theorem

A feed-forward neural network with a linear output and at least one hidden layer can
approximate any reasonable function to arbitrary precision with a finite number of nodes.

I Good News
I Networks can perform highly complex tasks

I All necessary ingredients available

I Bad News
I Does not specify number of necessary nodes

I No remarks on neuron connectivity

Machine Learning with Neural Networks Markus Götz

26

Deep Learning

I In practice: stacking layers works better

I Deep learning: more than one stage of non-linearities, e.g. layers

hand-designed
program

hand-designed
features

features

simple features

mapping

mapping

abstract
features

mapping

Input Output

Rule-based system

Machine learning

Deep learning

machine learned

Machine Learning with Neural Networks Markus Götz

27

Multi-class Classification

x1

x2

x3

x4

h1

h2

h3

h4

ŷ1

ŷ2

ŷ3

Input Hidden Output

I Extension of binary classification
concept

I One-versus-all classification
I Build c binary classifiers

I Pick class with highest
confidence/probability

I In neural networks
I Create multiple networks

I Add output neurons

Machine Learning with Neural Networks Markus Götz

28

Multi-class Classification

Multi-class classification recipe:

I One-hot class encoding: encode classes as sparse vectors
y = (y1, y2, ..., yc), only one is active, e.g. class 2→ (0,1, ...,0)

I Softmax output activation: ŷ = softmax(z) = ezj∑
j ezj for j = 1...c

achieve joint-probability of 1, normalize across model outputs z

I Cross-entropy loss: convex-function J(w) = 1
n
∑n

i=1
∑c

j yi,j log ŷi,j
maximum likelihood principle

Machine Learning with Neural Networks Markus Götz

29

Over- and Underfitting

degree=0
y

degree=3

x

y
degree=1

degree=9

x

Machine Learning with Neural Networks Markus Götz

30

Over- and Underfitting

I How do we know a network is not over- or underfitting?

I Idea: simulate “unseen” data

I Split data artificially into disjoint subsets
I Training set for training the model (usually 60%− 80%)

I Validation set for fine tunine the model (usually 20%)

I Test set to test validation (usually 20%− 40%)

Machine Learning with Neural Networks Markus Götz

31

Over- and Underfitting

Test loss

Training loss

Optimum

epoch

J
I Separate monitoring of training and

test loss during training

I Training loss will decrease indefinitely
J → 0, memorization effect

I Test loss minimum is optimal

Machine Learning with Neural Networks Markus Götz

32

Regularization

Methods to avoid overfitting, reduced validation error, might increase train error

I More data

I Augment: generate artificially new samples (add noise, translate, ...)

I Early stopping: monitoring of train and test loss, stop at optimum

I Penalize large weights: add a penalty term

I Dropout neurons

I Batch Normalization neurons

Machine Learning with Neural Networks Markus Götz

33

Penalty Terms

I Weights can become increasingly large, allowing overfitting

I Idea: penalize large weights

I Minimize function J∗(w) = J(w) + λΩ(w)

I Ω(w) is measure of weight magnitude

I λ is scale for Ω(w)
I J(w)� λΩ(w)—no regularization

I J(w)� λΩ(w)—no training

Machine Learning with Neural Networks Markus Götz

34

L1- and L2-Norm

I L1-Norm, also LASSO
I ‖w‖1 = (w1 + w2 + · · ·+ wf)

I All weights contribute to loss

I Encourages sparsity

I L2-Norm, also weight decay
I ‖w‖2

2 = (w2
1 + w2

2 + · · ·+ w2
f)

I Penalizes large weights

I Discourages sparsity

w1

w2

w1

w2

Machine Learning with Neural Networks Markus Götz

35

Dropout

I Randomly turn of neurons and connection, e.g. p(drop) = 0.5

I Equivalent to network regularization (proof omitted)

x1

x2

x3

x4

h1

h2

h3

h4

ŷ

Input Hidden Output

x1

x3

h2

h3

ŷ

Input Hidden Output

Machine Learning with Neural Networks Markus Götz

36

Neural Networks in Keras

from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.regularizers import l2

classes, features = 10, 200

Fully-connected neural network
model = Sequential()
model.add(Dense(16, input_dim=features, activation="tanh"))
model.add(Dense(16, kernel_regularizer=l2(0.02))
model.add(Dropout(0.1))
model.add(Dense(classes, activation=’softmax’))

Model compilation
model.compile(loss="categorical_crossentropy", optimizer="sgd")

Machine Learning with Neural Networks Markus Götz

37

Exercise 3: FNN MNIST Image Classification

Machine Learning with Neural Networks Markus Götz

38

Convolutional Neural Networks

Machine Learning with Neural Networks Markus Götz

39

Computer Vision

© Catster

I Easy for humans, hard for machines

I High input dimensionality R/N101−108

I Have to deal with POV-shifts, light
variation, occlusion, shape variation

I Classical computer vision answer:
I Inclusion of context information

I Usage of image filters

I Idea: combine with machine learning

Machine Learning with Neural Networks Markus Götz

40

Discrete Convolution

I Element-wise weighted sum of input and filter

I (f ∗ g)[n] =
∑∞

m=−∞ f [m]g[n −m]

I Stride: pixel distance for slide

I Filter size: window size of convolution kernel

I 2D input: volume of width × height(×channels)

I Models effects on images, e.g. edge detection

I In CNN: model “eye”, sparse weight sharing

Machine Learning with Neural Networks Markus Götz

41

Discrete Convolution

© Machine Learning Guru

Machine Learning with Neural Networks Markus Götz

41

Discrete Convolution

© Machine Learning Guru

Machine Learning with Neural Networks Markus Götz

41

Discrete Convolution

© Machine Learning Guru

Machine Learning with Neural Networks Markus Götz

42

Pooling

I Pooling reduces input sizes,
abstract downsampled copy

I Pool size: kernel height/width

I Strides: step width

I Typical pooling layers
I Max Pooling

I Average Pooling

1 1

4 6

2 4

7 8

3 2

1 1

1 0

3 4

6 8

3 4

2 × 2 Max Pooling, stride 2 × 2

Machine Learning with Neural Networks Markus Götz

43

Convolutional Neural Network Pyramid

© Medium

Machine Learning with Neural Networks Markus Götz

44

Batch Normalization

I Idea: standardize layer outputs

I Training time
I Calculate batch mean µB and

standard deviation σB

I Track rolling values µ and σ

I Normalize by x−µB
σB

I Prediction time
I Track µB and σB for covariate shift

I Add one degree of freedom

I Regularizes network

µB

x

ŷ

Machine Learning with Neural Networks Markus Götz

45

Optimizers

high
optimal

too low

too high

epoch

J
I Learning rate strongly impacts training

I Value for lr
I high: jumpy, no convergence

I low: slow training, local minima

I Earlier approach
I stop training every e epochs

I lower lr

I continue training

Machine Learning with Neural Networks Markus Götz

46

Optimizers

I Various flavors of SGD

I Include gradient momentum
I Accelerate previous gradient

I J∗t+1(w) = αJ∗t (w)− lr∇Jt (w)

I Adaptive learning rate
I Implemented in Adagrad

I Learning rate lri for each weight wi

I wi+1 = wi
lrt,i√∑∞

i=1∇wi Jt−i (wi)2
∇wi Jt (wi)

w1

w2

w1

w2

Machine Learning with Neural Networks Markus Götz

47

Optimizers

© Machine Learning Mastery

I RMSprop: enhanced Adagrad
I Learning rate got infinitely small

I Forgetting factor β for past gradients

I More intricate variants: Nesterov
momentum, Adadelta, Nadam, . . .

I Some non-SGD alternatives
I Particle-swarm optimization (PSO)

I BFGS

Machine Learning with Neural Networks Markus Götz

48

Hyperparameter Optimization

I Hyperparameters are all non-weight parameters
I Optimization algorithm

I Learning rate

I Regularization

I Network layer count

I Network neurons

I . . .

I Some can be inferred through thought

I Rest: trial and error

Machine Learning with Neural Networks Markus Götz

49

Hyperparameter Optimization

I Naı̈ve approaches
I Grid search

I Random search

I Search algorithms
I Kriging-based (hyperopt, Vizier)

I Particle-swarm optimization

I Genetic algorithms

I Meta-learning: use NN to find NN

x 2

grid search

x1

x 2

random search

Machine Learning with Neural Networks Markus Götz

50

ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

© Oren Kraus

I Main image recognition benchmark

I Natural image collection, 14m
samples

I Presented in 2009

I Since 2010, annual prediction
competition

I Image classification

I Object localization

I Scene detection

Machine Learning with Neural Networks Markus Götz

51

ILSVRC Results

ILSVRC10 ILSVRC11 AlexNet ILSVRC13 VGG Inception ResNet

5 · 10−2

0.1

0.15

0.2

0.25

0.3

year

er
ro

r
ra

te

50

100

150

la
ye

rs

Machine Learning with Neural Networks Markus Götz

52

Inception

© Joe Marino

Machine Learning with Neural Networks Markus Götz

53

Inception

I Winner of ILSVRC 2014

I Repeating same kernels

I Idea: repeating Inception
module

I Core concept
I Cheap non-linearities

(1× 1 convolution)

I Different resolution scales

Concatenation

1x1 convolution 3x3 convolution 5x5 convolution 1x1 convolution

1x1 convolution 1x1 convolution 3x3 max pooling

Previous layer

Inception Module

Machine Learning with Neural Networks Markus Götz

54

ResNet

© Medium

Machine Learning with Neural Networks Markus Götz

55

Residual Unit

I Winner of ILSVRC 2015

I Ultra deep network (152 layers)

I Idea: nested mini networks
I Learn residuals and add to input

I Unused units do nothing

I First time, humans have been
surpassed

Next layer

ReLU

Addition

BatchNorm

Convolution

ReLU

BatchNorm

Convolution

Previous layer

Residual Unit

Machine Learning with Neural Networks Markus Götz

56

Deep Learning Issues

I GPU memory size: forward and backward passes need to be stored
network parameters need to be stored
Counter by decreasing batch sizes, use multipe GPUs

I Vanishing and shattered gradients: gradients become too small or noise the
deeper you stack the network

I Debugging: almost impossible to understand what each components does
Some tools available: Influence functions, layer output investigation

Machine Learning with Neural Networks Markus Götz

57

CNNs in Keras

from keras.models import Sequential
from keras.layers import BatchNormalization, Conv2D,

Dense, MaxPooling2D
from keras.regularizers import l2

Convolutional neural network
w, h, c = 128, 128, 1 # width, height, channels
model = Sequential()
model.add(Conv2D(16, (5, 5), padding="same", input_shape=(w, h, c))}
model.add(MaxPooling2D((2, 2), strides=(1, 1))}
model.add(BatchNormalization())}
model.add(Dense(128)
model.add(Dense(classes, activation=’softmax’))

Model compilation
model.compile(loss="categorical_crossentropy", optimizer="sgd")

Machine Learning with Neural Networks Markus Götz

58

Keras Functional API

from keras.models import Model
from keras.layers import Dense, Input

features = 20
data = Input(shape=(features,))

layers can be connected by calling the previous layer
layer_1 = Dense(64)(data)
layer_2 = Dense(64)(layer_1)
predict = Dense(10, activation="softmax")(layer_2)

the model must be created manually
model = Model(inputs=[data], outputs=[predict])

Machine Learning with Neural Networks Markus Götz

59

Exercise 4: CNN MNIST Image Classification

Machine Learning with Neural Networks Markus Götz

60

Regression

Machine Learning with Neural Networks Markus Götz

61

Abalone Dataset

I Collected by the University of
Tasmania, Australia

I Abalones are “sea snails”

I 4177 instances, each 9 features

I Prediction task
I Regress age (rings + 1.5) of abalone

I Requires manual preprocessing

I Reduce microscopy cost and labor
© UCI Machine Learning Repository

Machine Learning with Neural Networks Markus Götz

62

Exercise 5: Abalone Age Regression Analysis

© Garnelaxia

Machine Learning with Neural Networks Markus Götz

63

Summary

Machine Learning with Neural Networks Markus Götz

64

Summary

I Supervised machine learning
I Logistic regression

I Fully-connected neural networks (FNN)

I Convolution neural networks (CNN)

I Network components
I Activation functions

I Regularization

I Optimizers

I Application scenarios, regression and classification

Machine Learning with Neural Networks Markus Götz

65

What’s more?

I Data augmentation: artificial data increase through rotation, scaling,
translation, etc. to better abstract patterns and increase data set size

I Embedding: lower-dimensional representation of (sparse) input data

I Capsule Networks: hierarchy and translation-aware neural networks

I Recurrent Neural Networks (RNN): sequence-learning neural networks,
e.g natural language processing and time series analysis

I Attention: learning “where to look”, e.g. for natural language translation

Machine Learning with Neural Networks Markus Götz

66

Acknowledgment

I Eileen Kühn
I GridKa School organization

I Paperwork

I Oskar Taubert
I Assignment preparation

I Exercise supervision

I Andreas Herten
I Access to JURON

I Technical support

Machine Learning with Neural Networks Markus Götz

67

Discussion

Machine Learning with Neural Networks Markus Götz

	Machine Learning Fundamentals
	AI and Machine Learning
	Logistic Regression
	Libraries
	Exercise: Logistic Regression

	Neural Networks
	Motivation
	Backpropagation
	Multi-class Classification
	Generalization
	Exercise: MNIST FNN

	Convolutional Neural Networks
	Deep Learning
	Discrete Convolution
	Network Architectures
	Exercise: MNIST CNN

	Regression
	Exercise: Abalone

	Summary
	Discussion

