
GPU PROGRAMMING 101
GRIDKA SCHOOL 2018
30 August 2018 Andreas Herten Forschungszentrum Jülich Handout Version

Member of the Helmholtz Association

About, Outline
About me

Physics: Dr. at PANDA (Particle Tracking with
GPUs)
Since then: NVIDIA Application Lab, POWER
Acceleration and Design Centre
Optimizing scientific applications for/on GPUs at Jülich
Supercomputing Centre

Motivation
Platform

Hardware
Features
High Throughput
Summary

Programming GPUs
Libraries
Directives
Languages
Abstraction Libraries/DSL
Tools

Conclusions

Member of the Helmholtz Association 30 August 2018 Slide 1 40

Status Quo
JURECA: Top 500 #70

1999: General computations with shaders of graphics hardware
2001: NVIDIA GeForce 3 with programmable shaders [2]; 2003: DirectX 9 at ATI
2007: CUDA
2018: Top 500: 20%with GPUs (#1, #3), Green 500: 7 of top 10 with GPUs

Status Quo
JURECA: Top 500 #70

10
2

10
3

10
4

 2008 2010 2012 2014 2016

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8970
FirePro W9100

FirePro S9150

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

8800 G
TS

G
TX 2

80

G
TX 2

85 G
TX 5

80

G
TX 5

80

G
TX 6

80

G
TX T

ita
n

Tesla
 K

40

G
TX T

ita
n X NVIDIA Titan X

NVIDIA Titan V

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

Theoretical Peak Performance, Single Precision

INTEL Xeon CPUs

NVIDIA GeForce GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[3
]

Status Quo
JURECA: Top 500 #70

10
-1

10
0

10
1

 2008 2010 2012 2014 2016

HD 3870

HD 4870 HD 5870
HD 6970

HD 6970

HD 7970 G
Hz Ed.

HD 8970

Fire
Pro W

9100

Fire
Pro S9150

X5482
X5492 W5590 X5680

X5690

E5-2690 E5-2697 v2

E5-2699 v3 E5-2699 v4

Tesla C
1060

T
e
sl

a
 C

1
0
6
0

T
e
sl

a
 C

2
0
5
0

Tesla M
2090

Tesla K20

Tesla K20X

Tesla K40

Tesla P100
Tesla V100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c
 p

e
r

W
a
tt

End of Year

Theoretical Peak Floating Point Operations per Watt, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[3
]

Status Quo
JURECA: Top 500 #70

10
2

10
3

10
4

 2008 2010 2012 2014 2016

HD 3
870

HD 4
870

HD 5
870

HD 6
970

HD 6
970

HD 7
970 G

Hz
Ed.

HD 8
970

Fire
Pro

 W
9100

Fire
Pro

 S
9150

X5482

X5492

W
5590

X5680

X5690

E5-2
690

E5-2
697 v

2

E5-2
699 v

3

E5-2
699 v

3

E5-2
699 v

4

Tesla
 C

1060

Tesla
 C

1060 Tesla
 C

2050 Tesla
 M

2090

Tesla
 K

20

Tesla
 K

20X

Tesla
 K

40

Tesla
 K

40

Tesla P100

Tesla V100

Xeon Phi 7120 (KNC)

X
eo

n
P
hi

 7
29

0
(K

N
L)

G
F

L
O

P
/s

e
c

End of Year

Theoretical Peak Performance, Double Precision

INTEL Xeon CPUs

NVIDIA Tesla GPUs

AMD Radeon GPUs

INTEL Xeon Phis

Gr
ap

hi
c:
Ru

pp
[3
]

Status Quo
JURECA: Top 500 #70

Status Quo
JURECA: Top 500 #70

JUWELS

Status Quo
JURECA: Top 500 #70

JUWELS

But why?!

Let’s find out!

Platform

Member of the Helmholtz Association 30 August 2018 Slide 3 40

CPU vs. GPU
Amatter of specialties

Transporting one

Gr
ap

hi
cs
:L
ee

[4
]a

nd
Sh

ea
rin

gs
H
ol
id
ay
s[
5]

Transporting many

Member of the Helmholtz Association 30 August 2018 Slide 4 40

CPU vs. GPU
Chip

ALUALU

ALU ALU
Control

Cache

DRAM DRAM

Member of the Helmholtz Association 30 August 2018 Slide 4 40

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 30 August 2018 Slide 5 40

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 30 August 2018 Slide 5 40

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

PCIe
<16GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100
16GB RAM, 720 GB/s

V100
32GB RAM, 900 GB/s

Unified Virtual Addressing

Member of the Helmholtz Association 30 August 2018 Slide 6 40

Memory
GPUmemory ain’t no CPUmemory

DRAM

ALUALU

ALU ALU
Control

Cache

DRAM

Host

Device

HBM2
<720GB/s

NVLink
≈80GB/s

GPU: accelerator / extension card
→ Separate device from CPU

Separate memory, but UVA and UM
Memory transfers need special consideration!
Do as little as possible!
Formerly: Explicitly copy data to/from GPU
Now: Done automatically (performance…?)

P100
16GB RAM, 720 GB/s

V100
32GB RAM, 900 GB/s

Unified Memory

Member of the Helmholtz Association 30 August 2018 Slide 6 40

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 30 August 2018 Slide 7 40

Async
Following different streams

Problem: Memory transfer is comparably slow
Solution: Do something else in meantime (computation)!

→ Overlap tasks

Copy and compute engines run separately (streams)
Copy Compute Copy Compute

Copy Compute Copy Compute

GPU needs to be fed: Schedule many computations
CPU can do other work while GPU computes; synchronization
Also: Fast switching of contexts to keep GPU busy (KGB)

Member of the Helmholtz Association 30 August 2018 Slide 8 40

GPU Architecture
Overview

Aim: Hide Latency
Everything else follows

SIMT

Asynchronicity

Memory

→ High Throughput

Member of the Helmholtz Association 30 August 2018 Slide 9 40

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 30 August 2018 Slide 10 40

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Gr
ap

hi
cs
:v
ol
ta
-p
ic
tu
re
s

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 30 August 2018 Slide 10 40

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Multiprocessor

Gr
ap

hi
cs
:v
ol
ta
-p
ic
tu
re
s

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 30 August 2018 Slide 10 40

SIMT
Of threads and warps

CPU:
Single Instruction, Multiple Data (SIMD)
Simultaneous Multithreading (SMT)

GPU: Single Instruction, Multiple Threads (SIMT)
CPU core≊ GPUmultiprocessor (SM)
Working unit: set of threads (32, awarp)
Fast switching of threads (large register file)
Branching if

Tesla V100

Te
ns
or
Co

re

Gr
ap

hi
cs
:v
ol
ta
-p
ic
tu
re
s

A0

A1

A2

A3

B0

B1

B2

B3

+

C0

C1

C2

C3

=

Vector

Core Core

Core Core

Thread

Thread

SMT

SIMT

Member of the Helmholtz Association 30 August 2018 Slide 10 40

New: Tensor Cores
New in Volta

8 Tensor Cores per Streaming Multiprocessor (SM) (640 total for V100)
Performance: 125 TFLOP/s (half precision)
Calculate A× B+ C = D (4× 4 matrices; A, B: half precision)

→ 64 floating-point FMA operations per clock (mixed precision)

× + =

FP16 FP32 FP16 FP32 FP16
FP32 FP32 FP16

FP32

Member of the Helmholtz Association 30 August 2018 Slide 11 40

Low Latency vs. High Throughput
Maybe GPU’s ultimate feature

CPU Minimizes latency within each thread
GPU Hides latency with computations from other thread warps

CPU Core: Low Latency
T1 T2 T3 T4

GPU Streaming Multiprocessor: High Throughput
W1

W2

W3

W4
Waiting
Ready
Context Switch
Processing
Thread/Warp

Member of the Helmholtz Association 30 August 2018 Slide 12 40

CPU vs. GPU
Let’s summarize this!

Optimized for low latency
+ Large main memory
+ Fast clock rate
+ Large caches
+ Branch prediction
+ Powerful ALU
− Relatively lowmemory bandwidth
− Cachemisses costly
− Low performance per watt

Optimized for high throughput
+ High bandwidth main memory
+ Latency tolerant (parallelism)
+ More compute resources
+ High performance per watt
− Limited memory capacity
− Low per-thread performance
− Extension card

Member of the Helmholtz Association 30 August 2018 Slide 13 40

Programming GPUs

Member of the Helmholtz Association 30 August 2018 Slide 14 40

Preface: CPU
A simple CPU program as reference!

SAXPY: y⃗ = a⃗x+ y⃗, with single precision
Part of LAPACK BLAS Level 1
void saxpy(int n, float a, float * x, float * y) {

for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy(n, a, x, y);

Member of the Helmholtz Association 30 August 2018 Slide 15 40

http://www.netlib.org/lapack/

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[7
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 30 August 2018 Slide 16 40

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[7
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 30 August 2018 Slide 16 40

cuBLAS
Parallel algebra

GPU-parallel BLAS (all 152 routines)
Single, double, complex data types
Constant competition with Intel’s MKL
Multi-GPU support

→ https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

Member of the Helmholtz Association 30 August 2018 Slide 17 40

https://developer.nvidia.com/cublas
http://docs.nvidia.com/cuda/cublas

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Member of the Helmholtz Association 30 August 2018 Slide 18 40

cuBLAS
Code example

int a = 42; int n = 10;
float x[n], y[n];
// fill x, y

cublasHandle_t handle;
cublasCreate(&handle);

float * d_x, * d_y;
cudaMallocManaged(&d_x, n * sizeof(x[0]);
cudaMallocManaged(&d_y, n * sizeof(y[0]);
cublasSetVector(n, sizeof(x[0]), x, 1, d_x, 1);
cublasSetVector(n, sizeof(y[0]), y, 1, d_y, 1);

cublasSaxpy(n, a, d_x, 1, d_y, 1);

cublasGetVector(n, sizeof(y[0]), d_y, 1, y, 1);

cudaFree(d_x); cudaFree(d_y);
cublasDestroy(handle);

Initialize

Allocate GPUmemory

Copy data to GPU

Call BLAS routine

Copy result to host

Finalize

Member of the Helmholtz Association 30 August 2018 Slide 18 40

Libraries
Programming GPUs is easy: Just don’t!

Use applications & libraries

W
iz
ar
d:

Br
ea
ze
ll
[7
]

cuBLAS

cuSPARSE

cuFFT

cuRAND
CUDA Math

th ano

Member of the Helmholtz Association 30 August 2018 Slide 19 40

Thrust
Iterators! Iterators everywhere!

Thrust
CUDA = STL

C++
Template library
Based on iterators
Data-parallel primitives (scan(), sort(), reduce(), …)
Fully compatible with plain CUDA C (comes with CUDA Toolkit)
Great with [](){} lambdas!

→ http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Member of the Helmholtz Association 30 August 2018 Slide 20 40

http://thrust.github.io/
http://docs.nvidia.com/cuda/thrust/

Thrust
Code example with lambdas

int a = 42;
int n = 10;
thrust::host_vector<float> x(n), y(n);
// fill x, y

thrust::device_vector d_x = x, d_y = y;

using namespace thrust::placeholders;
thrust::transform(d_x.begin(), d_x.end(), d_y.begin(), d_y.begin(), a * _1 + _2);

x = d_x;

Member of the Helmholtz Association 30 August 2018 Slide 21 40

Thrust
Code example with lambdas

#include <thrust/for_each.h>
#include <thrust/execution_policy.h>
constexpr int gGpuThreshold = 10000;
void saxpy(float *x, float *y, float a, int N) {

auto r = thrust::counting_iterator<int>(0);

auto lambda = [=] __host__ __device__ (int i) {
y[i] = a * x[i] + y[i];};

if(N > gGpuThreshold)
thrust::for_each(thrust::device, r, r+N, lambda);

else
thrust::for_each(thrust::host, r, r+N, lambda);}

So
ur
ce

Member of the Helmholtz Association 30 August 2018 Slide 21 40

https://devblogs.nvidia.com/parallelforall/new-compiler-features-cuda-8/

Programming GPUs
Directives

Member of the Helmholtz Association 30 August 2018 Slide 22 40

GPU Programming with Directives
Keepin’ you portable

Annotate usual source code by directives
#pragma acc loop
for (int i = 0; i < 1; i+*) {};

Also: Generalized API functions
acc_copy();

Compiler interprets directives, creates according instructions

Pro
Portability

Other compiler? No problem! To it, it’s a
serial program
Different target architectures from same
code

Easy to program

Con
Compilers support limited
Raw power hidden
Somewhat harder to debug

Member of the Helmholtz Association 30 August 2018 Slide 23 40

GPU Programming with Directives
The power of… two.

OpenMP Standard for multithread programming on CPU, GPU since 4.0, better since 4.5
#pragma omp target map(tofrom:y), map(to:x)
#pragma omp teams num_teams(10) num_threads(10)
#pragma omp distribute
for () {

#pragma omp parallel for
for () {
// …
}

}

OpenACC Similar to OpenMP, but more specifically for GPUs
Might eventually be re-merged into OpenMP standard

Member of the Helmholtz Association 30 August 2018 Slide 24 40

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc kernels
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 30 August 2018 Slide 25 40

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

Member of the Helmholtz Association 30 August 2018 Slide 25 40

OpenACC
Code example

void saxpy_acc(int n, float a, float * x, float * y) {
#pragma acc parallel loop copy(y) copyin(x)
for (int i = 0; i < n; i++)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y

saxpy_acc(n, a, x, y);

GPU tutorial

this afternoo
n!

Member of the Helmholtz Association 30 August 2018 Slide 25 40

Programming GPUs
Languages

Member of the Helmholtz Association 30 August 2018 Slide 26 40

Programming GPU Directly
Finally…

Two solutions:
OpenCL Open Computing Language by Khronos Group (Apple, IBM, NVIDIA, …) 2009

Platform: Programming language (OpenCL C/C++), API, and compiler
Targets CPUs, GPUs, FPGAs, and other many-core machines
Fully open source
Different compilers available

CUDA NVIDIA’s GPU platform 2007
Platform: Drivers, programming language (CUDA C/C++), API, compiler, debuggers,
profilers, …
Only NVIDIA GPUs
Compilation with nvcc (free, but not open)
clang has CUDA support, but CUDA needed for last step
Also: CUDA Fortran

Choose what flavor you like, what colleagues/collaboration is using
Hardest: Come up with parallelized algorithm

Member of the Helmholtz Association 30 August 2018 Slide 27 40

CUDA Threading Model
Warp the kernel, it’s a thread!

Methods to exploit parallelism:

Thread → Block

Block → Grid

Threads & blocks in 3D3D3D3D

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

0 1 2

Parallel function: kernel
__global__ kernel(int a, float * b) { }
Access own ID by global variables threadIdx.x, blockIdx.y, …

Execution entity: threads
Lightweight→ fast switchting!
1000s threads execute simultaneously→ order non-deterministic!

⇒ SAXPY!
Member of the Helmholtz Association 30 August 2018 Slide 28 40

CUDA SAXPY
With runtime-managed data transfers

__global__ void saxpy_cuda(int n, float a, float * x, float * y) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < n)
y[i] = a * x[i] + y[i];

}

int a = 42;
int n = 10;
float x[n], y[n];
// fill x, y
cudaMallocManaged(&x, n * sizeof(float));
cudaMallocManaged(&y, n * sizeof(float));

saxpy_cuda<<<2, 5>>>(n, a, x, y);

cudaDeviceSynchronize();

Specify kernel

ID variables

Guard against
too many threads

Allocate GPU-capable
memory

Call kernel
2 blocks, each 5 threads

Wait for
kernel to finish

Member of the Helmholtz Association 30 August 2018 Slide 29 40

Programming GPUs
Abstraction Libraries/DSL

Member of the Helmholtz Association 30 August 2018 Slide 30 40

Abstraction Libraries & DSLs

Libraries with ready-programmed abstractions; partly compiler/transpiler necessary
Have different backends to choose from for targeted accelerator
Between Thrust, OpenACC, and CUDA
Examples: Kokkos, Alpaka, Futhark, HIP, C++AMP, …

Member of the Helmholtz Association 30 August 2018 Slide 31 40

https://github.com/kokkos/kokkos/
https://github.com/ComputationalRadiationPhysics/alpaka
https://futhark-lang.org/
https://github.com/ROCm-Developer-Tools/HIP
https://en.wikipedia.org/wiki/C%2B%2B_AMP

An Alternative: Kokkos
From Sandia National Laboratories

C++ library for performance portability
Data-parallel patterns, architecture-aware memory layouts, …

Kokkos::View<double*> x("X", length);
Kokkos::View<double*> y("Y", length);
double a = 2.0;

// Fill x, y

Kokkos::parallel_for(length, KOKKOS_LAMBDA (const int& i) {
x(i) = a*x(i) + y(i);

});

→ https://github.com/kokkos/kokkos/

Member of the Helmholtz Association 30 August 2018 Slide 32 40

https://github.com/kokkos/kokkos/

Programming GPUs
Tools

Member of the Helmholtz Association 30 August 2018 Slide 33 40

GPU Tools
The helpful helpers helping helpless (and others)

NVIDIA
cuda-gdb GDB-like command line utility for debugging

cuda-memcheck Like Valgrind’s memcheck, for checking errors in memory accesses
Nsight IDE for GPU developing, based on Eclipse (Linux, OS X) or Visual Studio

(Windows)
nvprof Command line profiler, including detailed performance counters

Visual Profiler Timeline profiling and annotated performance experiments
OpenCL: CodeXL (Open Source, GPUOpen/AMD) – debugging, profiling.

Member of the Helmholtz Association 30 August 2018 Slide 34 40

http://gpuopen.com/compute-product/codexl/

nvprof
Command that line

Usage: nvprof ./app

$ nvprof ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling application: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37064== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.19% 262.43ms 301 871.86us 863.88us 882.44us void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
0.58% 1.5428ms 2 771.39us 764.65us 778.12us [CUDA memcpy HtoD]
0.23% 599.40us 1 599.40us 599.40us 599.40us [CUDA memcpy DtoH]

==37064== API calls:
Time(%) Time Calls Avg Min Max Name
61.26% 258.38ms 1 258.38ms 258.38ms 258.38ms cudaEventSynchronize
35.68% 150.49ms 3 50.164ms 914.97us 148.65ms cudaMalloc
0.73% 3.0774ms 3 1.0258ms 1.0097ms 1.0565ms cudaMemcpy
0.62% 2.6287ms 4 657.17us 655.12us 660.56us cuDeviceTotalMem
0.56% 2.3408ms 301 7.7760us 7.3810us 53.103us cudaLaunch
0.48% 2.0111ms 364 5.5250us 235ns 201.63us cuDeviceGetAttribute
0.21% 872.52us 1 872.52us 872.52us 872.52us cudaDeviceSynchronize

Member of the Helmholtz Association 30 August 2018 Slide 35 40

nvprof
Command that line

With metrics: nvprof --metrics flop_sp_efficiency ./app

$ nvprof --metrics flop_sp_efficiency ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
[Matrix Multiply Using CUDA] - Starting...
==37122== NVPROF is profiling process 37122, command: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
GPU Device 0: "Tesla P100-SXM2-16GB" with compute capability 6.0

MatrixA(1024,1024), MatrixB(1024,1024)
Computing result using CUDA Kernel...
==37122== Some kernel(s) will be replayed on device 0 in order to collect all events/metrics.
done122== Replaying kernel "void matrixMulCUDA<int=32>(float*, float*, float*, int, int)" (0 of 2)...
Performance= 26.61 GFlop/s, Time= 80.697 msec, Size= 2147483648 Ops, WorkgroupSize= 1024 threads/block
Checking computed result for correctness: Result = PASS
==37122== Profiling application: ./matrixMul -wA=1024 -hA=1024 -wB=1024 -hB=1024
==37122== Profiling result:
==37122== Metric result:
Invocations Metric Name Metric Description Min Max Avg
Device "Tesla P100-SXM2-16GB (0)"

Kernel: void matrixMulCUDA<int=32>(float*, float*, float*, int, int)
301 flop_sp_efficiency FLOP Efficiency(Peak Single) 22.96% 23.40% 23.15%

Member of the Helmholtz Association 30 August 2018 Slide 35 40

Visual Profiler
Your new favorite tool

Member of the Helmholtz Association 30 August 2018 Slide 36 40

Conclusions

Member of the Helmholtz Association 30 August 2018 Slide 37 40

Summary of Acceleration Possibilities

Application

Libraries OpenACC
Directives

Programming
LanguagesAfternoon

Drop-in
Acceleration

Easy
Acceleration

Flexible
Acceleration

Member of the Helmholtz Association 30 August 2018 Slide 38 40

Omitted
There’s so muchmore!

What I did not talk about
Atomic operations
Sharedmemory
Pinnedmemory
Managedmemory
Debugging
Overlapping streams
Multi-GPU programming (intra-node; MPI)
Cooperative groups
Independent thread progress
Half precision FP16
…

Cooperative Groups

Program Counter (PC), Call Stack (S)

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

PC
,S

Co
nv

er
ge
nc
e

O
pt
im

iz
er

Independent
Thread Progress

Member of the Helmholtz Association 30 August 2018 Slide 39 40

Summary & Conclusion

GPUs can improve your performancemany-fold
For a fitting, parallelizable application
Libraries are easiest
Direct programming (plain CUDA) is most powerful
OpenACC is somewhere in between (and portable)
There are many tools helping the programmer

→ See it in action this afternoon atOpenACC tutorial Thank you

for your att
ention!

a.herten@fz-juelich.de

Member of the Helmholtz Association 30 August 2018 Slide 40 40

mailto:a.herten@fz-juelich.de

APPENDIX

Member of the Helmholtz Association 30 August 2018 Slide 1 10

Appendix
Further Reading & Links
GPU Performances
Glossary
References

Member of the Helmholtz Association 30 August 2018 Slide 2 10

Further Reading & Links
More!

A discussion of SIMD, SIMT, SMT by Y. Kreinin.
NVIDIA’s documentation: docs.nvidia.com
NVIDIA’s Parallel For All blog

Member of the Helmholtz Association 30 August 2018 Slide 3 10

http://yosefk.com/blog/simd-simt-smt-parallelism-in-nvidia-gpus.html
docs.nvidia.com
https://devblogs.nvidia.com/parallelforall/

Volta Performance
GV100 GPU Hardware Architecture In-Depth

The World’s Most Advanced Data Center GPU WP-08608-001_v01 | 10

Table 1. Comparison of NVIDIA Tesla GPUs

Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100
GPU GK180 (Kepler) GM200 (Maxwell) GP100 (Pascal) GV100 (Volta)
SMs 15 24 56 80
TPCs 15 24 28 40
FP32 Cores / SM 192 128 64 64
FP32 Cores / GPU 2880 3072 3584 5120
FP64 Cores / SM 64 4 32 32
FP64 Cores / GPU 960 96 1792 2560
Tensor Cores / SM NA NA NA 8
Tensor Cores / GPU NA NA NA 640
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1462 MHz
Peak FP32 TFLOPS1 5 6.8 10.6 15
Peak FP64 TFLOPS1 1.7 .21 5.3 7.5
Peak Tensor TFLOPS1 NA NA NA 120
Texture Units 240 192 224 320
Memory Interface 384-bit GDDR5 384-bit GDDR5 4096-bit HBM2 4096-bit HBM2
Memory Size Up to 12 GB Up to 24 GB 16 GB 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shared Memory Size /
SM

16 KB/32 KB/48
KB

96 KB 64 KB Configurable up
to 96 KB

Register File Size / SM 256 KB 256 KB 256 KB 256KB
Register File Size /
GPU

3840 KB 6144 KB 14336 KB 20480 KB

TDP 235 Watts 250 Watts 300 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion
GPU Die Size 551 mm² 601 mm² 610 mm² 815 mm²
Manufacturing
Process

28 nm 28 nm 16 nm FinFET+ 12 nm FFN

1 Peak TFLOPS rates are based on GPU Boost Clock

Figure: Tesla V100 performance characteristics in comparison [volta-pictures]

Member of the Helmholtz Association 30 August 2018 Slide 4 10

Appendix
Glossary & References

Member of the Helmholtz Association 30 August 2018 Slide 5 10

Glossary I

API A programmatic interface to software by well-defined functions. Short for
application programming interface. 39, 45

ATI Canada-based GPUsmanufacturing company; bought by AMD in 2006. 3

CUDA Computing platform for GPUs from NVIDIA. Provides, among others, CUDA
C/C++. 3, 35, 45, 46, 47, 49, 59, 66

DSL A Domain-Specific Language is a specialization of a more general language to a
specific domain. 2, 48, 49

MPI The Message Passing Interface, a API definition for multi-node computing. 58

NVIDIA US technology company creating GPUs. 2, 3, 45, 52, 62, 65, 67

Member of the Helmholtz Association 30 August 2018 Slide 6 10

Glossary II

OpenACC Directive-based programming, primarily for many-core machines. 40, 41, 42, 43,
49, 59

OpenCL The Open Computing Language. Framework for writing code for heterogeneous
architectures (CPU, GPU, DSP, FPGA). The alternative to CUDA. 45, 52

OpenMP Directive-based programming, primarily for multi-threadedmachines. 40

POWER CPU architecture from IBM, earlier: PowerPC. See also POWER8. 2, 66
POWER8 Version 8 of IBM’s POWERprocessor, available also under the OpenPOWER

Foundation. 66

SAXPY Single-precision A× X+ Y. A simple code example of scaling a vector and adding
an offset. 28, 46, 47

Member of the Helmholtz Association 30 August 2018 Slide 7 10

Glossary III

Thrust A parallel algorithms library for (among others) GPUs. See
https://thrust.github.io/. 35

Volta GPU architecture from NVIDIA (announced 2017). 24

Member of the Helmholtz Association 30 August 2018 Slide 8 10

https://thrust.github.io/

References I

[2] Chris McClanahan. “History and Evolution of GPU Architecture”. In: A Survey Paper (2010).
URL: http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-
hist-paper.pdf (page 3).

[3] Karl Rupp. Pictures: CPU/GPU Performance Comparison. URL:
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-
characteristics-over-time/ (pages 4–6).

[7] Wes Breazell. Picture: Wizard. URL:
https://thenounproject.com/wes13/collection/its-a-wizards-world/
(pages 29, 30, 34).

Member of the Helmholtz Association 30 August 2018 Slide 9 10

http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
http://mcclanahoochie.com/blog/wp-content/uploads/2011/03/gpu-hist-paper.pdf
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://www.karlrupp.net/2013/06/cpu-gpu-and-mic-hardware-characteristics-over-time/
https://thenounproject.com/wes13/collection/its-a-wizards-world/

References: Images, Graphics I

[1] Igor Ovsyannykov. Yarn. Freely available at Unsplash. URL:
https://unsplash.com/photos/hvILKk7SlH4.

[4] Mark Lee. Picture: kawasaki ninja. URL:
https://www.flickr.com/photos/pochacco20/39030210/ (page 11).

[5] Shearings Holidays. Picture: Shearings coach 636. URL:
https://www.flickr.com/photos/shearings/13583388025/ (page 11).

[6] Nvidia Corporation. Pictures: Volta GPU. Volta Architecture Whitepaper. URL:
https://images.nvidia.com/content/volta-architecture/pdf/Volta-
Architecture-Whitepaper-v1.0.pdf.

Member of the Helmholtz Association 30 August 2018 Slide 10 10

https://unsplash.com/photos/hvILKk7SlH4
https://www.flickr.com/photos/pochacco20/39030210/
https://www.flickr.com/photos/shearings/13583388025/
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf
https://images.nvidia.com/content/volta-architecture/pdf/Volta-Architecture-Whitepaper-v1.0.pdf

	Outline
	Motivation
	Platform
	Hardware
	Features
	High Throughput
	Summary

	Programming GPUs
	Libraries
	Directives
	Languages
	Abstraction Libraries/*dsl
	Tools

	Conclusions
	Summary
	Appendix
	Appendix
	Further Reading & Links
	*gpu Performances
	Glossary & References
	Glossary

	Glossary
	References

	References
	References

