

Behind the scenes perspective:
Into the abyss of profiling for
performance

Part I

Servesh Muralidharan & David Smith
IT-DI WLCG-UP
CERN
29 Aug’18

1

Format of Workshop
q Essentials (45 minutes)

§ Program and Computer Architecture
§ Parallelism
§ Compilers
§ Profiling and benchmarking

q Exercises: Matrix multiplication
q Hands on (90 minutes)
q Break (30 minutes)
q Exploiting parallelism (45 minutes)

§ SIMD
§ OpenMP

q Hands on (90 minutes)

2

Concept of an Ideal Program
q Readability Vs Performance
q Compute Algorithm

§ 20% – 30% of code but has >90% of run time
§ Most optimizations are applied here
§ Big O notation

• Describes the worst case performance in terms of input size
• Can represent time or space
• Example: O(n) – Linear (Finding an item in an unsorted array)

§ Extremely readable code for compilers
• Elegance and Obscurity
• Compilers will love it and we only care about performance!!!
• Be nice and use explicit comments for fellow human beings to understand

q Glue code
§ 70% – 80% of code but has <10% of run time
§ Contains code used for structuring and connecting different blocks
§ Extremely readable code for humans

• Compilers will hate you but that’s okay, we don’t care about performance here

3

CPU

Essentials: Computer Architecture
q Stored-Program computer

§ Von Neumann model
§ Program and data are stored in memory and then processed

Control Unit

ALU

Memory Unit

Input Output

4

Decode

Fetch

Instruction processing

Step What happens

1 Fetch Get the instruction (from memory or
cache)

2 Decode Translate the x86 machine codes op
codes into (possibly multiple) internal
operations

3 Execute Do the instruction (may require memory
access)

4 Writeback Write the result to storage or make visible
in the architectural registers (Retirement)

https://commons.wikimedia.org/wiki/File:Intel_Nehalem_arch.svg

Writeback

Execute

5

Cache lines
q Data is always fetched in units of a cache line

§ On x86 cache line size is 64 bytes
§ Usually data read from main memory still be

stored in the cache, so even if you need less
than the size of a cache line 64 bytes will be
fetched

§ Caches have to be kept consistent if the same
cache line is present in multiple caches: e.g.
those associated to different cores or different
processor sockets within a machine

6

https://commons.wikimedia.org/wiki/File:Cache,associative-read.svg

Memory Hierarchy
Processor Core

(Registers)

L1I
(32 KB)

L1D
(32 KB)

L2
(256 KB)

Shared L3
(8192 KB)

Local memory
(relatively large)

4 cycles

12 cycles

~36 cycles

200-450
cycles

Approximate memory latencies
on Intel Haswell CPUs

Adapted from S. Jarp, A. Nowak

M
em

or
y

si
ze

 in
cr

ea
se

s

M
em

or
y

ac
ce

ss
 la

te
nc

y
de

cr
ea

se
s

7

Few sec

<1 Min

Few mins

Few hours

Few days

Memory and Disk
q Today we are concerned mostly with

main memory (RAM) when talking
storage outside the processor
§ Typically 1 to 100s of Gigabytes in size

q However often data will be on a storage
device like:
§ Object storage, Disks, SSDs, NVMe devices
§ These will have latencies from 50 to

+100,000 times longer than main memory
§ But often much larger capacity, multiple

terabytes or petabytes

8

q Essentials (45 minutes)
§ Program and Computer Architecture
§ Parallelism
§ Compilers
§ Profiling and benchmarking

q Exercises: Matrix multiplication
q Hands on (90 minutes)
q Break (30 minutes)
q Exploiting parallelism (45 minutes)

§ SIMD
§ OpenMP

q Hands on (90 minutes)

9

1st form of HW Parallelism: Instruction level parallelism
(Absolutely Free*)

q Multiple instructions can be decoded per
cycle

q Multiple instructions can be dispatched
§ Because there are multiple execution units

(ports) they may execute simultaneously
§ The execution units take different types of

instructions when the port is available
q Called superscalar architecture

https://commons.wikimedia.org/wiki/File:Intel_Nehalem_arch.svg

Execution
Units

10

2nd form of HW Parallelism: Pipelining
(Absolutely Free*)

Instruction 1 2
Fetch X X
Decode X X
Execute X X
Write X X
Clock 1 2 3 4 5 6 7 8

Instruction 1 2
Fetch X X
Decode X X
Execute X X
Write X X
Clock 1 2 3 4 5

With pipelining approachWithout pipelining approach

11

q Only possible if the execution flow of the code is understood by the processor
q Ex: Compiler hints, Strided memory access, Loop bounds

3rd form of HW Parallelism: Vector Instructions

q There are vector registers
§ e.g. in processors with Intel AVX there

are registers YMM0 – YMM15 which
are 256 bits in length

q Example of one instruction that
operates on multiple data

q Data may be placed into these in
various ways
§ Scalar (just some of the width for one

value)
§ Packed (a number of values one after

the other)

12

single single single singlePacked

Scalar

Packed

Scalar

A1 A2 A3 A4

B1 B2 B3 B4

A1 op B1 A2 op B2 A3 op B3 A4 op B4

=

⊙

single

Double Double

Double

4B 4B 4B 4B

128b Vector Instruction

4th form of HW Parallelism: Hardware threads
A.K.A Resource Multiplexing

HW Thread 2

HW Thread 1 Execution
Port

LLC ICACHE

DCACHE

Memory
Control

Register

Execution
Port

LLC ICACHE

DCACHE

Memory
Control

Register
q Hardware thread

§ The register files and instruction pointer to
provide the architectural execution
environment. e.g. rax, rbx, the instruction
pointer and other registers

§ One ore more hardware threads share the
resources of a core

§ Instruction executed by a core is tagged as
belonging to the associated hardware thread

§ Intel called this hyperthreading (HT) or
generally Simultaneous Multithreading (SMT)

13

5th form of HW Parallelism: Multicore

q Core
§ The execution logic, cache, and facilities for

storing execution state. e.g. register files

https://commons.wikimedia.org/wiki/File:
Dual_Core_Generic.svg

14

6th form of HW Parallelism and on...
Multisocket, Cluster, Grid…

https://commons.wikimedia.org/wiki/File:Processor_board_cray-2_hg.jpg

https://commons.wikimedia.org/wiki/File:High_Performance_Computing_Center_Stuttgart_HLRS_2015_10_
Cray_XC40_Hazel_Hen.jpg

https://sciencenode.org/feature/large-
hadron-colliders-worldwide-computer.php

15

The Compiler
q Compiler is the bridge between your

code and the hardware
q Consist of a front-end and back-end
q Front-end:

§ Language focused
q Back-end:

§ Machine focus: architecture specific analysis
§ Optimization
§ Code generation in native machine code

Source File

Compiler

Object file

Executable

16

Compiler
q Compiler is one of the layers which can help in

having well performing code
q Compiler features can give you performance with

no change of your code (‘for free’)
§ Each compiler is different
§ Different releases of a compiler can behave differently,

to give different performance or even different results

17

Compiler
q Provide your compiler as much information as

possible
§ Typically make loops explicit

• Let the compiler generate code which can reason on the
number of iterations
• Don’t break out of the loop early
• Try to keep memory access contiguous
• Keep arithmetic operations together

§ Some flags may change results
§ Tune for your target architecture if you can

18

Floating Point essentials
q Floating point numbers are a way to represent real numbers,

stored as a significand (mantissa), exponent and sign
q N = (-1)s x 1.ccc… x bqqq…

§ Finite number of floating point numbers of a given width (e.g.
doubles) whereas an uncountable number of real numbers

q Therefore while the FP operations are precisely defined by
IEEE-754 the result will usually need to be rounded.
§ Usually b = 2 and ccc.. and qqq… are stored as binary

representation. b=10 (decimal) is also specified by the standard
§ Some rational numbers which can be represented as terminating

decimals are recurring when using base 2
• numbers like 0.1 can only be represented as a truncated number (i.e. are

rounded) in floating point

19

Floating Point
q Some basic properties of operations on real numbers

do not hold on floating point numbers
§ E.g. associativity. Generally:

Where
denotes floating point addition,
denotes floating point multiplication

(a⊕ b)⊕ c ≠ a⊕ (b⊕ c)

⊕

(a⊗ b)⊗ c ≠ a⊗ (b⊗ c)

⊗

20

Matrix Multiplication

A= B=

C=AB= !!"!!"
!

!!!
	

21

Why Matrix Multiplication???
q Matrix multiplication is fundamental to large numerical computations

§ Large math problems can be decomposed into linear equations and then solved using MM
§ Motivation behind the development of high performance math libraries such as BLAS, MKL, etc./
§ LINPACK benchmark used to rank Supercomputers is based on matrix operations

q Computer scientists are obsessed with matrix multiplication optimizations
§ For very good reasons!!!
§ The naive version has O(n3) complexity

• However, several algorithms that do it faster already exists
§ Arithmetic Intensity

• Naïve algorithm has a very low Floating point operations per byte
• Fundamental computation involves 2 operations for every 3 numbers

§ Several hundred papers
q For the hands on we will use matrix multiplication as an illustration

§ However, if you want to do matrix multiplication in your application use a common library
• If you want to know why we can give you more than hundred different reasons (with proof!!!)

22

First Attempt
for(size_t i=0;i<n;++i) {
for(size_t j=0;j<p;++j) {
sum = 0;
for(size_t k=0;k<m;++k) {
sum += a[i*m+k] * b[k*p+j];

}
c[i*p+j] = sum;

}
}

= *
Ci
j

Ai
k

Bk
j

23

!!"!!"
!

!!!
	

Possible memory layout
q e.g. A, B and C are 3 x 3 matrix of doubles

A

B

C

Possible cache
line boundary

Padding or used
by allocator

Row
Major

24

Memory access pattern
i=0, j=0, k=0 i=0, j=0, k=1

i=0, j=0, k=2 i=0, j=1, k=0

C00

B00

A00

C00

B10

A01

C00

B20

A02

C01

B01

A00

25

Improvement: Order memory access
q By ordering the access differently can improve

cache locality
q Try to access memory in a previously access

cache line (e.g. improve spatial locality)

26

Change order
i=0, j=0, k=0 i=0, j=1, k=0

i=0, j=2, k=0 i=0, j=0, k=1

C00

B00

A00

C01

B01

A00

C02

B02

A00

C00

B10

A01

27

Cache Blocking (also called tiling)
q Divide a problem into pieces where work can be done on a subset of the data, and

where the subset fits into the CPU caches, e.g. where the value of block is chosen
so the three inner loops can run over data that fits inside the cache

/* This gives C = A*B + C */
for(size_t i=0;i<n;i+=block) {
for(size_t j=0;j<p;j+=block) {
for(size_t k=0;k<m;k+=block) {

for(size_t ii=i; ii<min(i+block,n);++ii) {
for(size_t jj=j; jj<min(j+block,p);++jj) {
sum = c[ii*p+jj];
for(size_t kk=k; kk<min(k+block,m);++kk) {
sum += a[ii*m+kk] * b[kk*p+jj];

}
c[ii*p+jj] = sum;

}
}

}

}
}

28

Profiling
q Utilization of resources

§ What? Why? How?
§ Help understand performance i.e. Better bang for buck

q Profiling with a view to understand performance
§ Resource specific

• Examine utilization, saturation or errors specific to a resource
§ Code specific

• Investigate resources used by the program and its functions
§ Dependable results

• Strict methodology that is free from bias
• Reputability of the measurements

29

Things that impact profiling
q What affects the timings?

§ Other workloads
§ Concurrent access to disk, network, memory etc.
§ Frequency scaling (Intel Turbo Boost)
§ Non-uniform memory access (NUMA)
§ CPU scheduler

q There can still be large time variations
q Always do multiple runs, make sure each run has similar conditions,

e.g. if you program accesses data from files
§ Remove staging in files
§ Empty filesystem caches

• echo 3 > /proc/sys/vm/drop_caches

30

How to profile
q Profiling at the level of an application

§ Add timings into source code
§ Measure call counts etc

q Disadvantages
§ Creates overhead
§ It is not always possible to recompile the code

• Production software is large and complex
• Source code is not readily available

31

How to profile
q Kernel, OS and hardware offer a variety of tools and interfaces

to measure high and low-level events with little performance
impact. This can be done in an intrusive and non-intrusive way.
Some examples for non-intrusive techniques:
§ Performance Monitoring Unit
§ /proc - is a virtual filesystem that represents the current state of the

Linux kernel
§ Linux Control Groups (cgroups) limits and monitors resource usage of

processes
q Some examples of intrusive techniques:

§ Dynamic linker allows one to replace symbols at runtime
• Instrumented function, e.g. malloc

32

How to profile
q Performance Monitoring Unit

§ Number of registers, counters and features supported are
CPU specific. The following can be measured:

• CPU cycles
• Branch predictions
• Instructions
• Cache accesses
• Memory accesses
• Any many other things…

§ Will use this today (via the tool perf)

33

How to profile – non-intrusive tools
q Performance Monitoring Unit – Problems:

§ Vast amount of counters – correlation between them
can be difficult to understand

§ Encoding can change for different CPU models
q Tools to read counters from PMU:

§ perf https://perf.wiki.kernel.org/index.php/Tutorial
§ pmu-tools is a wrapper around perf

• https://github.com/andikleen/pmu-tools

34

Exercises
q Connect to machines at CERN to run the

exercises: user name is gss2018

q Thanks to the teams at CERN for providing machines and access, including:

Luca Atzori Olof Barring Ian Bird
Maria Girone Stefan Lueders Alberto Di Meglio
Guillermo Izquierdo Moreno Wayne Salter
Markus Schulz Hannah Short Bernd Panzer-Steindel

35

Exercise 1 – Naïve matrix multiplication
q Investigate the basic (naïve) matrix multiplication

§ The source and ‘makefiles’ are setup to build binaries with gcc and icc
§ The example is setup to multiply two square matrices of a size (order) given on the

command line, using double precision floating point
q Time how long the multiplication takes, e.g. with order 2300
q Use perf to measure the number of cycles and number of retired instructions

§ Calculate the IPC count for the application

q Amount of work performed per clock tick (Instructions Per Cycle):

perf stat –e cpu-cycles,instructions ./program

36

IPC = Retired Instructions
CPU clock cycles

Exercise 2 – Change data access order
q Adapt the naïve multiplication and try every ordering of the 3 for loops

§ Measure the execution time of all the combinations
q Consider the order of data access
q For the i, k, j ordering

§ Measure IPC again
§ Measure the LLC cache misses

• Remeasure the naïve case and compare

q Last level cache: relevant perf event names LLC-load-misses, LLC-prefetch-misses and for totals LLC-loads, LLC-
prefetches

perf stat –e LLC-load-misses,LLC-prefetch-misses ./program

37

Exercise 3 – Rewrite with blocking
q Taking the i,k,j loop order for the previous example and adapt

the multiplication routine to use cache blocking
§ Leave the block size as a parameter that you can adjust
§ Measure the runtime, IPC and LLC misses with varying blocksize:

• try sizes 64, 128, 256, 512, 1024, 2048, 4096 matrix rows/columns (but
you must use vectors of sufficiently large order)

§ Estimate the working size of the data being access for the optimum
blocksize. How does it compare to the CPU cache size?

• You can use the following to get information:

getconf -a | grep CACHE

38

q olsnbb03
q olsnbb05
q olsnbb08
q olsnbb09
q olsnbb10
q olsnbb11
q olsnbb16
q olsnbb17
q olsnbc03
q olsnbc04
q olsnbc06

40

