
Ralf Ulrich

CORSIKA Upgrade
Simulating particle cascades for astroparticle physics

Ralf Ulrich
on behalve of the authors of arXiv:1808.08226 (in particular
Maximilan Reininghaus)
and the particpants of the Next-generation CORSIKA Workshop

2

CORSIKA upgrade

Cornerstone for the scientific work of
many experimental collaborations

Excellent understanding of particle
cascades is important for almost all
aspects in astroparticle physics

There are existing limitations that must
be overcome

Need a new and modern framework that
allows our field to tackle physics
questions over the next ~3 decades

● New large-scale detectors, new
fundamental physics arxiv.org/abs/1808.08226

3

Next generation of CORSIKA

Framework for simulating particle
cascade processes

● modular, flexibel
● precise, fast

Fundamental integration of
● Parallelization
● GPUs
● Modularity and flexibility

Highest quality air shower simulations
and complex data analyses

4

5

Milestones, planning

Requirement for CORSIKA-upgrade: better physics performance than CORSIKA

● Milestone 0: July 2018, Workshop at KIT, and white paper

● Milestone 1: end of september 2018
Framework definition, working environment/infrastructure, first documentation

● Milestone 2: end of 2018
First cascade calculations, w/ simple atmosphere

● Milestone 3: February 2019
SIBYLL2.3 and UrQMD included and a useful atmosphere model

● Milestone 4:~Summer 2019
Include E.M. interactions

● Milestone 5: CORSIKA 8.1.0, ~2020
First full physics (demonstrator) release

6

Brief introduction to some concepts

● In physics we often think+work within well defined reference frames. We
want to map this fact into code and enforce it!

● Help physicist to produce correct algorithms.

● Code as close as possible to natural physics representation.

OK not OK

567_GeV + 1_TeV constants::c + 1_m

point1.GetX()point1.GetX(showerFrame)

particle::GetMass(5)particle::GetMass(Sib2Cors(PID::Electron))

→ does simply not compile

7

Example, main cascade loop

8

Example, particles on stack(s)

9

Example, particle properties

● Particle properties are automatically generated from Pythia8
ParticleData.xml file.

10

Examples, geometry

11

Heitler model (equal energy splitting)

12

Diagnostics of the cascade process, E
0
=100GeV

Use lowest energy particle for next step in cascade:

Use highest energy particle for next step in cascade:

13

Example, pysical units

● Thus, this fails at compile time already:

 auto alpha = 90. * EeV / meter;

 EnergyType E1 = 10_GeV + alpha;

Discussion right now:
units → units::si and units::hep

14

Atmosphere

● Environment::GetVolumeId(point)
● Environment::GetVolumeBoundary(trajectory)
● Environment::GetTargetParticle(point)
● Environment::GetDensity(point)
● Environment::GetIntegratedDensity(trajectory)
● Environment::GetRefractiveIndex(point)
● Environment::GetTemperature(point)
● Environment::GetHumidity(point)
● Environment::GetMagneticField(point)
● Environment::GetElectricField(point)

15

Dependencies (right now: eigen3)

● C++17 compiler.
● CMake build system.
● git [for development].
● doxygen [for development].
● presumably boost for yaml and xml, histograms, file system access, command-line options, light-weight

configuration parsers (property tree), random numbers, etc.
● HDF5 and/or ROOT for data storage [at least one of both required]
● PyBind11 for bindings to Python.
● HepMC as generic interface, also for exotics [optional].
● In order to generate random numbers, we will use standardized interfaces and established methods. For

testing purposes, the possibility to exchange the random-number engine should be relatively easy. No
homegrown generators and only well established, checked, and vetted methods for generating random
numbers should be used, likelily provided by boost as well.

● Eigen3 for linear algebra.
● catch2 for unit tests.
● PhysUnits for units.

16

Impact on community

● There is opportunity to actively contribute

– Shape parts of the project for the future, and for specific applications

– Get in contact:
● Write to me, connect to corsika-devel@lists.kit.edu, and to gitlab.ikp.kit.edu

● Some goals and standards

– Make it really hard/impossible to produce wrong physics and results

– Make complete use of available optimization and high-performance concepts

– High standards on code, combined with excellent documentation

– Extensive use of testing, automation and unit testing

– Direct access to high-level validation

– Very low-level enforcement of physical concepts on the level of code compilation

mailto:corsika-devel@lists.kit.edu

Summary

CORSIKA was started 20 years ago for a very specific task, has evolved to a
critical piece of infrastructure for astroparticle physics

Modernize for optimal support of astroparticle physics for the next ~3 decades!

More flexibility, more modularity, fundamentally enforce physical concepts,
much better access to modeling uncertainties, fast, efficient and precise

Set new benchmark for physics software frameworks.

Open to community effort!

CORSIKA and ISAPP
school 2018 at CERN

Comprehensive school about
air shower modeling and
related physics.

https://indico.cern.ch/event/719824/

https://indico.cern.ch/event/719824/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

