LiberTEM-live: Real-Time Data Processing
for Electron Microscopy

Alexander Clausen’, Dieter Weber', Rafal E. Dunin-Borkowski'

' Ernst Ruska-Centre, Forschungszentrum Julich, 52425 Jilich, Germany

JULICH

J Forschungszentrum

a.clausen@fz-juelich.de

What is LiberTEM-live

A real-time streaming data processing engine, developed for
electron microscopy, written in Python and Rust

Main application: 4D STEM

Real time?

Ideal: system can run indefinitely, and can keep up with the data
rate of the detector

By principle, the performance depends on the actual user code

What does the data look like?

Sparse

X
y‘:H .

that is run on the data stream, and on the hardware, so we
cannot make absolute guarantees

® Supported detectors: Quantum Detectors MerlinEM, Amsterdam

Scientific Instruments CheeTah T3, DECTRIS-based detectors
(ARINA, QUATRO, ...) @® Our case: soft or firm real-time, depending on the use-case. For

a preview, we can afford to drop frames, but if we are recording
data, it can lose value if frames are dropped.

@® Experimental support: Gatan K2IS, ASI frame-based detectors

@® There is still a nontrivial amount of latency in the whole
pipeline, from receiving data to showing results, and also jitter, ®
which is for example introduced by garbage collection of Python

@® Supports custom algorithms (user-defined functions; UDFs), for
example for custom contrast methods, portable between live
and offline processing

Detectors: like high-speed greyscale cameras . @ Principle: only record and transmit non-zero values

Result: individual time-stamped events (x, y, t) of when and

® Input datais a stream of 2D images, with headers interspersed, . @
: where an electron hit the detector

@® If the receive buffer is approx. as large as one acquisition: can in a vendor-specific encoding/protocol, possibly compressed, ...

relax real-time requirements by waiting between acquisitions

until the receive buffer is completely drained @® Typical detector sizes: 128x128, 192x192, 256x256, 512x512, @
1860x2048 :

@® Throughput: tested with real detectors up to 2GiB/s.
Performance depends on your custom computation and your

For 4D STEM, the events are then put into bins for each scan
hardware

position
@® [n the relaxed scenario: main limiting resource: size of shared

memory receive buffer ® Typical frame rates: 1khz ~ 120khz

@® Scalable: runs on CPU and multi-GPU systems @® We support a streaming variant of the standard CSR format, by

splitting the CSR matrix for the whole stream into chunks for

@ Frame rates and sizes can vary at runtime: they are influenced processing

® Can beintegrated into custom workflows and user interfaces SHM by settings like binning, only recording a subset region of the
% Worker 1 detector, or bit depth
@® Current UL live plotting in jupyter notebooks. In development: Detector % %
GUI based on CEOS PantaRhei
% Worker N

Data Flow

Boundary: in-process, network, or IPC Boundary: IPC
I I

| |
User Interface ! Python !
or API user | in-process or as network API |

......

) Results | , Reduced results
; ¢ ,
Control : Main control loop |
I I
e I I
| |
flexible: can be integrated | ,
into different workflows and , | Worker 1
user interface applications | Control Status |
I I
I
Boundary: network or IPC | UDFs
I
A 4 I
Detector System | : Receiver |
(vendor specific, proprietary) | background thread(s) | oo
7 '
I
|
_ ° | | Worker N
i |
Detector-specific '
, receiving code
|
messages / packets | "stacks of frames" | UDFs
vendor-specific protocols ' possibly still |
and formats | compressed or encoded :
I
I

Example applications Future plans

LiberTEM-live

® Common 4D STEM functionality included/available: CoM, virtual ® Support for new detectors, including Timepix4

detectors, single-sideband ptychography, strain mapping, ...

® Work on user interfaces to make LiberTEM-live more accessible

® LiberTEM-live, integrated into the CEOS PantaRhei GUI, as a 4D to microscopists

STEM interface (WIP)

e Python / Rust
e Open source: GPLv3 / MIT

@® Extract low-level components into re-usable libraries, wherever
there is interest - generic array streams?

@® Make the camera interface more generic - require less Python
glue code and make it easier to integrate support for new
detectors

@® Use a common state machine for predictable behavior

initializing

cccccc

pip install libertem-live

uiggere&

recovering from fatal error

® Not limited to electron microscopy - see "Live Iterative | e
Ptychography" by D. Weber for an example use-case in X-ray
ptychography: https://doi.org/10.1093/mam/ozae004

cccccc

@® Your use-case?

ssssssss

https://libertem.github.io

Industry partners

| (B AMSTERDAM
DECTRIS rr— CEOS
i | Corrected Electron Optical
detecting the future p _— INSTRUMENTS iy i

GATAN

Funding and support

#))OLICH

FORSCHUNGSZENTRUM

HELMHOLTZ

®

MDMC

HELMHOLTZ

Member of the Helmholtz Association

