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Exponential increase in the demand 

for data storage and processing

A promising solution:

Resistive switching memory

Real-time biasing 

experiments in the TEM
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Internet 

of things

• Non-volatile memory

• Simple cell structure

• Fast switching time

• Low power (voltage) operation 

• Large on/off ratio [2–4]
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Voltage• Volume of data/information created, captured, copied,

and consumed worldwide from 2010 to 2020, with

forecasts from 2021 to 2025 (in zettabytes).

• Changes in computing architecture and hardware are

therefore urgently needed to meet the increased

demands for data storage and processing.
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Imaging Diffraction Spectroscopy

• In situ biasing setup in the TEM is a

great tool to unravel resistive

switching mechanisms in different

material systems.

Device fabrication on MEMS chip

• Micro-crossbar 

device on Si3N4

membrane

• Metal oxide layers 

grown by ALD

• TiO2 switching layer

2–5 µm

C1

C2

C3

BE

C1

C2

C3

BE

Si3N4 (40 nm) 

Ta (3 nm) 

Pt (BE) (15 nm) 

Al2O3 (1.2 nm) 
TiO2 (7 nm) 

Cr (5 nm) 

Pt (TE) (15 nm) 

V
SiN

membrane

top electrode

bottom electrode

vertical 

stack

Area-mode switching studied by TXM in real-time 

Local investigation of conducting filament by STEM-EELS

Conclusions
• Reliable resistive switching of PCM and VCM was successfully investigated by in

situ electrical biasing setup with advanced TEM techniques.

• Correlative measurements by TXM and TEM revealed the presence of a

conducting filament, which is the origin of the filamentary switching of VCM device.

• 4D-STEM with a nanobeam electron diffraction enabled tracking the annihilation

and recreation of conduction path (e.g. evolution of crystalline grains) of AIST

during resistive switching.

• No clear difference in 

the spectra between 

the HRS and LRS of 

the device

• No structural change 

of TiO2 and strong 

Joule heating

• Filamentary switching at higher voltage and compliance current in the same device

• Non-negative matrix factorization (NMF) performed to extract feature spectra

• Local formation of conducting filament (reduction of Ti and oxidation of Cr) [5]

Device fabrication on MEMS chip

• Ag-In-Sb-Te (AIST) cells 

(bridge structure) on Si3N4

membrane

• Capping layer for the heat 

dissipation

• AIST switching layer
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Resistive switching of AIST observed by STEM imaging 

Filamentary and interface-type switching 

(Valence change material, VCM)
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Identification of amorphous and crystal by 4D-STEM
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• Contrast changes at 

the bridge observed by 

HAADF-STEM

• Need to confirm 

whether contrast 

changes originate from 

the transition between 

amorphous and 

crystalline phases of 

AIST or not

• Differentiation between amorphous and crystalline phases using 4D-STEM

• Rupture and recreation of the conduction path caused by the transition between 

amorphous and crystalline phases, resulting in the evolution of crystalline grains

Nanobeam electron diffraction
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