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OVERVIEW

2G Groundbased Gravitational Wave Detection (GWD)

* Current status
* Technical developments: e.g. frequency-dependent squeezing

* Future groundbased GWD
* Einstein Telescope (ET) => see also talk by Harald Liick tomorrow morning!
e Cosmic Explorer (CE, in the US)
* Intermediate iterations:

QCZ/
A+, A#, Voyager ) @Q
G
()

LISA (Laser Interferometer Space Antenna)

PTA (Pulsar Timing Arrays): recent results =\



Gravitational Wave Observatories
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Developments in aLIGO
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Definition BNS inspiral range:

= Distance at which a GW signal

from a BNS merger with 1.4M, /1.4M,
would be detected with

a signal-to-noise ratio (SNR) of 8,
averaged over all possible sky locations

and inclinations
without considering cosmological corrections.

BNS Range [Mpc]

Weeks of observing
https://Idas-jobs.ligo.caltech.edu/~detchar/summary
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OBSERVATIONS TO DATE (16.10.24)

01+02+03 = 90, 04a* = 81, 04b* = 68, Total =.239
* Oda and 04b entries are preliminary candidates found online. :
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LIGO-VIRGO-KAGRA COMPACT BINARY
CATALOGUE
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What have we already learned?

* First detection of GWs from a BBH system (GW150914)
* Physics of BHs

e First detection of GWs from a BNS system (GW170817)
* Birth of multimessenger astronomy with GWs
e Constraining the equations of state of neutron stars

* Localisation capabilities of a GW source
* Measurement of the GW propagation speed
* Test of General Relativity

e Alternative measurement of the Hubble constant

* GW polarisations
* Intermediate mass black hole (G\W190521)

[Slide modified from M. Punturo, APS Talk 2022 ,,GW Perspectives"]



adVirgo test mass (42 kg, f = 350 mm, d = 200 mm)

Coil Disk

Actuator Cage

Figure 3. Input Payload, Figure 4. Input Payload during assembly (left) and its
CAD drawing,. integration with SA (right).

modified from: L. Naticchioni and on behalf of the Virgo Collaboration, J. Phys.: Conf. Ser. §567 012002 (2018)



Frequency-dependent squeezing in aLIGO
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D. Ganapathy et al. (The LIGO O4 Detector Collaboration), ,,Broadband Quantum Enhancement of the LIGO Detectors with
Frequency-Dependent Squeezing”, Phys. Rev. X 13, 041021 (2023)]
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Frequency-dependent squeezing in aLIGO

LIGO Hanford LIGO Livingston
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D. Ganapathy et al. (The LIGO O4 Detector Collaboration), ,,Broadband Quantum Enhancement of the LIGO Detectors with
Frequency-Dependent Squeezing”, Phys. Rev. X 13, 041021 (2023)]
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Extreme-mass-
ratio inspirals
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Radio pulsar timing arrays Terrestrial interferometers

Detectors

Bailes, M., Berger, BK., Brady, P.R. et al., Gravitational-wave physics and astronomy in the 2020s and 2030s, Nat Rev Phys 3, 344-366 (2021), https://doi.org/10.1038/
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FUTURE GWD NETWORK
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Gravit tional Wave Observatories
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3G GROUNDBASED GWD

Einstein Telescope Cosmic Explorer

Einstein Telescope

g

Cosmic Explorer 4-km LIGO

H facility
40-km Arm
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W_ﬂg—_?o::'rner station and End statioj

Baseline: Triangular configuration _
4-km filter cavity

with 10 km length
Underground (200 — 300 m) construction
3 detectors with 2 interferometers each

Xylophone design (LF and HF) From: https://physics.mit.edu/

Bailes, M., Berger, B.K., Brady, P.R. et Image: Angela Nguyen, Virginia Kitchen, Eddie
https://www.einstein-teleskop.de al. Nat Rev Phys 3, 344-366 (2021) Anaya, California State University Fullerton
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ASTROPHYSICAL SENSITIVITY
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Source: V. Kalogera, Report from the Next-Generation Gravitational-Wave (hgGW) Detector Concept Subcommittee of the Advisory
Committee to the NSF MPS Directorate, APS April 2024 Meeting
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ET BASELINE DESIGN

» A European project!
« Triangular* configuration with 10 km length
* Underground (200 — 300 m) construction
« 3 detectors with 2 interferometers each
« Xylophone design (LF and HF)

*. other topologies are being considered




ET -HF

high-power, room-temperature
high-frequency detector

1550nm SRM

-

1064nm

SRM

-

u o
Squeezer PD : Filter cavity 1 = =
oOMm-------- S - -[[ .......... H HOH Squeezer
\ L )
4 Optical element, Optical element, Laser beam 1550nm
E Fused Silica, Silicon, Laser beam 1064nm
room temperature ayogenic 000 e cececeaeea squeezed light beam

ET-HF. 00K

1064 nm Laser (500W)

High circulating light power, 3MW
Thermal compensation

Large test masses (SiO2, 200kg)
New coatings

Frequency dependent squeezing

ET-LF. 10-20K

Cryogenics

Long Seismic suspensions (17m towers)
Silicon (Sapphire) test masses

Large test masses (200kg, 45cm diam.)
New coatings

New laser wavelength (1550nm)

+ low power

Frequency-dependent squeezing



ET TIMELINE (ESFRI PROPOSAL 2021)

* Tentative s

ORI

CDR  ESFRI proposal
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Building governance
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ET installation
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SFRI Phases: Design Preparatory Implementation Operation
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The ET Collaboration

e Formed June 2022

e Currently, the ET collaboration is composed by >1500 members, organized in >80 Research Units
(RU), affiliated to >205 institutions distributed over 22 countries

* Applications for new RUs are regularly submitted
* Germany: currently 13 RUs and more than 220 members!

Slide: Harald Liick (modified)




GERMAN ET COORDINATION TEAM

...Is composed of the German RU Leaders, communication experts,
executive assistants, ex-officio members, and the FNR representative

...currently meets weekly (8 am on Thursday mornings) in preparation for the
FIS proposal => Harald's talk fomorrow

...enables communication and information exchange (community building,
meetings) amongst German ET members

...interfaces with ET-Organisation, politics, and industry

...works on the whole range of ET Science: instrumentation, data analysis,
observational science, modelling, site preparation,...

...and more!



UNITED STATES DETECTOR TIMELINES

Now- 2025-2030 2030-2035 2035-2040
2025
LIGO 04 05
A+
LIGO A* | R&D, Procurement, Commissioning, Operation
Proposal | Installation Operation
(6yrs after funding)
Voyager | R&D, R&D, Installation, Operation
Proposal | Proposal, Commissioning,
Procurement Operation (3.5yrs after
funding)
CE R&D, Site selection, Design Construction Commissioning,
Design (Concept, preliminary and Operations
final reviews) (~5yrs after
funding)

Source: V. Kalogera, Report from the Next-Generation Gravitational-Wave (hgGW) Detector Concept Subcommittee of the Advisory
Committee to the NSF MPS Directorate, APS April 2024 Meeting
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Scientific discovery potential for
NgGW tacilities

Black Holes and Neutron Stars across the Universe

Complete sample of black-hole mergers out to beginnings of star formation

* Intermediate-mass black holes (IMBH)
« Precision GW Astrophysics for both black holes and neutron stars

Physics of Dense Matter and Multi-Messenger Astrophysics

« Deep probes of QCD physics through high-precision measurements of neutron-star fidal deformability and radii
« Post-merger neutron-star GW signal detection

«  GW counterparts for all short gamma-ray bursts
Possible three-way multi-messenger detection of stellar core collapse

Cosmology Probes and the Dark Sector

Precision Hubble constant measurements and probe of dark energy through both neutron-star and black-hole mergers

Pgrobes )of dark matter and particle physics through the detection of ultra-light boson clouds around spinning black holes (‘gravitational
atoms

+ Potential evidence of primordial black holes through very high redshift detections

Fundamental Physics and Novel Sources

« Multiple tests of General Relativity are possible
« Detection of unanticipated signals revealing new physics

Source: V. Kalogera, Report from the Next-Generation Gravitational-Wave (hgGW) Detector Concept Subcommittee of the Advisory
Committee to the NSF MPS Directorate, APS April 2024 Meeting



1 AU (750 million km) )

« Massive Black Holes: Monitoring the long inspirals of supermassive black hole binaries.

« Cosmic Measurements: Using gravitational waves to refine our knowledge of the universe’s
expansion.

- Early Universe: Probing cosmic dawn with gravitational waves.

« Fundamental Physics: Investigating theories beyond Einstein’s, including exotic objects
and dark matter signals

Image: Bailes, M., Berger, B.K., Brady, P.R. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s.
Nat Rev Phys 3, 344-366 (2021). https://doi.org/10.1038/s42254-021-00303-8



THE LISA MISSION

LISA was selected as ESA’s 3rd large
mission in the Cosmic Vision program

Orlglnolly scheduled for launch in 2034
schedule currently ,,in flow".

Builds on the SUCCESS of the LISA
Pathfinder mission

Developmentis.in full swing
Junior partn Slgle Y
LISA Consortium brings TOe
national agencies of Europe O
scienftists from around the world




Characteristic Strain

LISA —scientific goals

- Compact galactic binaries:

Ll SA SO urces - Study formation and evolution
- Distribution within Milky Way Galaxy
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LISA —project status

Implementation Schedule — ESA Major Milestone
Dates — Proposed (TBC)

esa

Adoption 25. January 2024

Prime Kick-Off Oct/Nov 2024

Mission SRR (after co-engineering) April 2025 Q2/2023

Mission PDR Nov 2027/Feb 2028 In Q3/Q4 2024 - Q1/Q2 2025

Mission CDR auary 2031 Q4/2027
Target for Launch @

» LISA Adoption during ESA-SPC January meeting
» Following adoption, the LISA Science Team (LST) will be selected

« LST is expected to set up working groups which target specific science investigations
» LISA Consortium will be heavily involved in scientific work

« LISA Consortium Is currently being restructured to adapt to new structure

Slide: Guido Muller



Mean pulse profile
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Studying mergers of supermassive black hole binaries.
Cosmic Background: Sensing a background hum from
countless unresolved black hole binaries.

Astrophysical Phenomena: Leveraging pulsar data for
broader astronomical insights.

Images: Bailes, M., Berger, B.K., Brady, P.R. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s.

Nat Rev Phys 3, 344-366 (2021). https://doi.org/10.1038/s42254-021-00303-8



— ‘

PULSAR TIMING ARRAYS

Marginal evidence for a Gravitational Wave 0.8
Background in EPTA (25 years) and InPTA (10 years)

data (publications 2023) 067

0.4 -

No individual SMBBH source of GWs yet(?)

soon to be able to observe with EM Telescopes

« MM astronomy of nano-Hz GW detection

« Hoping for (less well understood) exotic sources.
Key science: Properties of SMBBH; maybe primordial _044 -
GWs?e 06 -
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Future facilities will join: Angular separation (deg)

* SKA (Square Kilomter Array) - 2027¢

* NgVLA (next-gen Very Large Array) > 2031

e DSA-2000 (Deep Synoptic Array) - 2026<¢
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EPTA Collaboration and InPTA Collaboration, ,,The second data release from the European Pulsar Timing Array lll. Search for
gravitational wave signals *, A&A 678, A50 (2023), https://doi.org/10.1051/0004-6361/202346844
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