

KAT Community Meeting - Karlsruhe, Oct. 16-18, 2024

Astroparticle Physics in Germany – Long-Term Strategy 2024

DM@KAT: Manfred Lindner, Federica Petricca

The Science Case

radiation: 0.005%

chemical elements: (not H & He) 0.025%

stars:0.8%

H &He: gas 4%

 V_{e}, V_{μ}, V_{τ} neutrinos = CvB: 0.17%

?

black holes: PBH or LBH

dark matter: 26.8%

dark energy: 68.3%

Gravity

Particles

Modified GR

MOND simple one scale modification → fails...

Other is the EP fundamental or effective?

BHs

today's BHs

a suitable population (mass, number) of primordial black holes BSM physics motivated ←→ SM problems

- neutrinos - WIMPs: ...neutralino ...other

- axions
- sterile v's

- ----

Models with correct abundance

- WIMPs
- dark photons
- ALPs
- other new particles

thermal production (WIMP miracle, ...) non-thermal (decay, out-of-equilibrium, ...)

→ theory: both phenomenological & formal
 i) potential solutions ii) preferred candidates iii) exclusions

Primordial Black Holes as a Dark Matter

Green, arXiv:2402.15211

Particle Dark Matter

- many candidates, 51 orders of magnitude, one or a cocktail? - what to look for?

→ motivated by other facts / problems: WIMPs, axions, sterile neutrinos
→ theoretical beauty..., your personal preference...

(Heavy) Particle-Like DM Hunting

known Standard Model (SM) particles interact with WIMPs: assumptions...

indirect detection

FERMI, PAMELA, AMS, HESS,
IceCube, CTA, HAWC...
astronnomical uncertainties...
→ signal without doubt DM?

colliders

may detect new particles, but is it DM (lifetime, abundance)?

So far nothing seen...

- → SUSY & higher scale
- → other SB motivated WIMPs
- → new ideas/candidates

WIMP wind : ~232km/s from Cygnus

→ modelling
→ rare event backgrounds

Dark Matter: Research Fields & Funding

KAT constituencies:

Theory Neutrino properties Low energy neutrino astrophysics Cosmic rays Gamma astronomy High energy neutrino astrophysics Gravitational waves Nuclear astrophysics Dark Matter

KHK

+international partners...

Bundesministerium für Bildung und Forschung

Particle Dark Matter @Germany

Axion experiments particle physics

(Baby) U

• MadMax MPP, DESY, MPIfR, RWTH Aachen, Hamburg, Tübingen

• ALPSII DESY, Mainz, Hannover, Hamburg

(Baby) IAXO DESY, Heidelberg, Siegen, Bonn, Mainz, Hamburg, MPP

This meeting:

- **COSINUS** test DAMA/Libra claim \rightarrow MPP
- DeLight
- CRESST
- XENON
- future: DARWIN → XLZD

CRESST

Science goal:

Direct detection of low mass dark matter (complementary to XENON)

Technical realization

Cryogenic *O*(10mk) calorimeters Quantum-enabled Transition Edge Sensors for temperature read-out

Highlights:

World-leading limits on low-mass dark matter Lowest nuclear recoil thresholds

Strong German involvement:

MPP, TUM, Tübingen, Uni Heidelberg Spokesperson: F. Petricca (MPP)

CRESST Timeline

2024

data taking

2025

CRESST sensitivity upgrade program:

- Performance improvement (lower threshold): done 🥑
- Background reduction: ongoing 🗸
- Exposure increase: to be completed

New readout chain (288 channels) already funded by agencies and procured New readout electronics being produced Installation planned after the end of ongoing data-taking

 \rightarrow compensate ageing of current readout that limits the number of useable channels

- Improving test capabilities
- increase reachable exposure

Ava

2

CRESST Sensitivity

The XENON Dark Matter Program

The XENON program at Gran Sasso, Italy (3600 mwe)

Trentino-Alta ige	XENON10	XENON100	XENON1T &	& XENONnT
Vale d'Aosta Piemonte Ugura Sardegna Sardegna Sistia				
Period	2005-2007	2008-2016	2012-2018	2019-202n
Total (active) mass	25 kg (14kg)	161 kg (62 kg)	3200 kg (2t)	~8600 kg (5.9t)
Drift length	15 cm	30 cm	100 cm	150 cm
Status	Completed (2007)	Completed (2016)	Completed (2019)	Running
σ _{SI} limit (@50 GeV/c²)	$8.8 \times 10^{-44} \text{ cm}^2$	$1.1 \times 10^{-45} \mathrm{cm}^2$	$1.6 \times 10^{-47} \mathrm{cm}^2$	$\sim 10^{-48} \text{ cm}^2$
BG level	l 600 [t d keV]-1	l 5.3 [t d keV]-1	l 0.2 [t d keV]-1	l 0.04 [t d keV]-1

200+ members, 29 institutes, 12 countries

Very strong roles ←→ essential German contributions:

- Co-spokesperson
- Chair of Collaboration Board
- Analysis Coordinator
- Several task group leaders

Evolution: Detector Mass and Background

PDG24: Limits on the SI WIMP cross section

- + recent new result from LZ
- + XENONnT:
 - first observation of solar v's via CEvNS @2.73 σ
 - new WIMP result soon

XENONnT Limits on other New Physics

Limit on 14.4 keV peak for ⁵⁷Fe solar axions is < 20 events/(t*y)

Axion-like particles

 μ_{v} < 6.3 10⁻¹² μ_{B} , most stringent DD imit

Phys.Rev.Lett. 129 (2022) 16, 161805

DARWIN → XLZD

DARWIN = **XENON** + others

XLZD = merger of XENON, LZ, DARWIN and others

- \rightarrow collaboration recently fully established: 73 institutes
 - 8 German institutes: KIT, MPIK, Freiburg, Mainz, Münster, Heidelberg, Darmstadt und Dresden
- → FIS application

mass: 75 t Lxe (60t) drift length ca. 300 cm

The Strategic Perspective

Xenon gas is the main cost factor

XENONnT: Total invest ca. 35-40M \in - out of this ca. 30 M \in for 10t xenon gas XLZD: 250M \in - similar ratio of gas / other hardware

Important to remember: Xenon is a commodity

- can be sold later
- can serve as strategic reserve (essential for chip industry)
- re-use existing xenon gas form XENON and LZ = 10+10 = 20 tons
- German groups alread own 4.4 t of Xe gas (historic average ca. 3M€ / ton) mostly in XENONnT, partly for R&D at home institutions
- Contributed a significant fraction of hardware in XENON1T and XENONnT ½ of the PMTs, TPC, distillation, n-veto, μ-veto, DAQ, RGMS, screening...
- **Possible XLZD locations:** LNGS, Boulby, SURF, Kamioka, SNOLAB
- Germany in XLZD:
 - 20-25% of people
 - similar fraction of the invest \rightarrow time integrated ca. 60 M \in (mostly xenon to be sold)
 - leading roles $\leftarrow \rightarrow$ key expertise

German R&D and Pre-Investements

• Freiburg:

800kg xenon gas
plus ~1.5 M€:
* PANCAKE Test Platform
full diameter test system

• MPIK:

3000kg xenon gas

plus ~1.5 M€:

- * RGMS (Rare Gas MS): Kr@Xe at ppq
- * Auto-RGMS: Fully automated RGMS
- * Improvements of GeMPIs for γ-screening
- * GeMPI-Neo: next generation γ-screening (~15 cts/d/kg)
- * Auto-Ema: Automated Rn screening facility
- * Radon mitigation by surface coating reduction up to ~1000 achieved

- KIT:
 - 260kg xenon gas
 - * Electrodes R&D: HV test setups, TPC "MOTION" (ca. 80 kg IXe)
 - * Computing: prototype Analysis Platform realized in 2023, with access to batch & storage at KIT Scientific Computing Centre (GridKA)
- Mainz:

200kg xenon gas

- * Neutron Veto: water Cherenkov detector w/ Gd-sulfate, GS recovery
- * ³⁷Ar low-energy ER internal line source @ TRIGA (XENON1T/nT)
- * Facility for electrode scanning (upgrade to DARWIN/XLZD size)
- * XeLiPS test facility
- * low-energy NR response, MainzTPC

• Münster

200kg xenon gas

Development and demonstration of

- * a new mid-scale Rn removal system
- * a Kr concentrator (lossless online Kr removal)
- * running one system
 - with Kr and Rn removal
 - together with LXe purification,
 - analytics and calibration
- * 2 cryogenic distillation systems for Kr and Rn removal existing (XENONnT)
- * 2 new ones under construction (LowRad)

On-going DARWIN R&D funded by BMBF, ERC, MPG, HGF
 very strong strategic position of German groups alone and in combination:

PANCAKE (Freiburg) + large size electrode development (KIT)
 → development and test of a very critical component

cryogenic distillation systems (Münster) + Rn coating (MPIK)

→ technology to reduce the limiting Radon background

neutron veto (Mainz)

→ essential for any future detector

in addition: various powerful / essential low background mitigation techniques

The Science Case of XLZD

Physics case for a large liquid xenon detector: JoPG, arXiv:2203.02309 (600 authors)

→ XLZD: An Observatory for Rare Physics

Emerging topic: CEvNS at DM detectors (XLZD) + COHERENT+ESS + reactor experiments Now: onset of signal Future: large statistics → impressive list of extra physics topics

Conclusions on Dark Matter

One of the most important topics in fundamental physics

- New particles, gravity or both?
- Both sides contribute already a bit (neutrinos, black holes)
- Many theoretical ideas / motivations and detection methods
- Direct detection important: Discover/verify DM in the Universe
- Particle DM
 - axions @KET
 - KAT: COSINUS, DeLight, CRESST, XENON, XLZD
 - big new project: XLZD = merger of XENON, LZ, DARWIN
 - * utilize 10+10 tons of existing xenon \rightarrow total goal 50-80
 - * total invest: 250 M€ integrated German fraction 60M€ (xe gas...)
 - * strong German role: key technologies and essential expertise
 - * excellent science potential: DM, solar v's, CEvNS, SN, $0\nu\beta\beta$, ...

Discussion