LEGEND-1000 Forschungsinfrastruktur

Bernhard Schwingenheuer Max Planck Institute for Nuclear Physics, Heidelberg

KAT strategy meeting, Karlsruhe 16-19 October, 2024

- I consider it a safe bet that neutrinos are Majorana particles \rightarrow best way to test conjecture is to search for neutrinoless double beta decay, $\Delta L=2$
- many good motivations for Majorana:
 - neutrino has no charge that allows to discriminate particle from antiparticle

LEG

- I consider it a safe bet that neutrinos are Majorana particles \rightarrow best way to test conjecture is to search for neutrinoless double beta decay, $\Delta L=2$
- many good motivations for Majorana:
 neutrino has no charge that allows to discriminate particle from antiparticle
 - if Dirac: out of 4 states (particle antiparticle, helicity ± 1) only 2 exist in nature (other 2 have only tiny coupling to Higgs)

ŁEGE

The iminate particle from antiparticle cle, helicity ± 1) only 2 exist in nature

- I consider it a safe bet that neutrinos are Majorana particles \rightarrow best way to test conjecture is to search for neutrinoless double beta decay, $\Delta L=2$
- many good motivations for Majorana:
 - neutrino has no charge that allows to discriminate particle from antiparticle - if Dirac: out of 4 states (particle – antiparticle, helicity ± 1) only 2 exist in nature
 - (other 2 have only tiny coupling to Higgs)
 - matter antimatter asymmetry of universe \rightarrow Baryon and Lepton number violated, Leptogenesis models allow to explain asymmetry

- I consider it a safe bet that neutrinos are Majorana particles \rightarrow best way to test conjecture is to search for neutrinoless double beta decay, $\Delta L=2$
- many good motivations for Majorana:
 - neutrino has no charge that allows to discriminate particle from antiparticle if Dirac: out of 4 states (particle antiparticle, helicity ± 1) only 2 exist in nature
 - if Dirac: out of 4 states (particle antiparti (other 2 have only tiny coupling to Higgs)
 - matter antimatter asymmetry of universe \rightarrow Baryon and Lepton number violated, Leptogenesis models allow to explain asymmetry
 - "most" extensions of Standard Model predict Majorana

- I consider it a safe bet that neutrinos are Majorana particles \rightarrow best way to test conjecture is to search for neutrinoless double beta decay, $\Delta L=2$
- many good motivations for Majorana:
 - neutrino has no charge that allows to discriminate particle from antiparticle - if Dirac: out of 4 states (particle – antiparticle, helicity \pm 1) only 2 exist in nature
 - if Dirac: out of 4 states (particle antiparti (other 2 have only tiny coupling to Higgs)
 - matter antimatter asymmetry of universe \rightarrow Baryon and Lepton number violated, Leptogenesis models allow to explain asymmetry
 - "most" extensions of Standard Model predict Majorana
 - neutrino mass tiny, dim 5 operator & seesaw mechanism explain the light mass

Sch

Why germanium-76?

• $^{Z}A \rightarrow ^{Z+2}A+2e \rightarrow$ sum of electron energies = Q value of decay \rightarrow Ge detectors have best E resolution

- sensitivity ~ Mass * time if "background-free" LEGEND-1000 is background-free (like GERDA) beyond 10 t*yr exposure
- concept "germanium detectors in liquid argon" pioneered by GERDA (idea of Gerd Heusser)

LEGEND collaboration

formed in 2016 by merger of GERDA + Majorana Demonstrator + others, 280 members

Comenius Univ. Czech Tech. Univ. Prague and IEAP Daresbury Lab. Duke Univ. and TUNL Gran Sasso Science Inst. Indiana Univ. Bloomington Inst. for Nucl. Res. Rus. Acad. Sci. Jagiellonian Univ. Joint Inst. for Nucl. Res. Joint Res. Centre Geel Lab. Naz. Gran Sasso Lancaster Univ. Leibniz Inst. for Crystal Growth Leibniz Inst. for Polymer Research Los Alamos Natl. Lab. Max Planck Inst. for Nucl. Phy. Max Planck Inst. for Physics

Natl. Res. Center Kurchatov Inst. Natl. Res. Nucl. Univ. MEPhl North Carolina State Univ. Oak Ridge Natl. Lab. Polytech. Univ. of Milan Queen's Univ. Roma Tre Univ. and INFN Simon Fraser Univ. SNOLAB South Dakota Mines Tech. Univ. Dresden Tech. Univ. Munich Tennessee Tech. Univ. Univ. of California and LBNL Univ. College London Univ. of L'Aquila and INFN Univ. of Liverpool

Univ. of Milan and INFN Univ. of Milano Bicocca and INFN Univ. of New Mexico Univ. of North Carolina at Chapel Hill Univ. of Padova and INFN Univ. of Regina Univ. of South Carolina Univ. of South Dakota Univ. of Tennessee Knoxville Univ. of Texas at Austin Univ. of Tuebingen Univ. of Warwick Univ. of Washington and CENPA Univ. of Zuerich Williams College cooperation Hochschule Karlsruhe more on LEGEND-1000

LEGEND-200

- took over GERDA infrastructure in 2020
- new + larger ⁷⁶Ge detectors
- new argon instrumentation
- new electronics, ...
- start data taking end 2022 with 140 kg
- first unblinding for Neutrino'24
- detector production ongoing
 eventually ~200 kg
- T_{1/2} sensitivity goal 10²⁷ yr

LEG

LEGEND-1000 in Hall C @ LNGS

Hall C @ LNGS: cross section through L1000

Ge detector array

infrastructure design largely informed by GERDA

lock: clean installation of Ge det string

calibration source mechanics

new building: GND, 3m, 6m, 10m level for DAQ, cryogenics, clean rooms...

clean room: lock installation

clean room: string assembly glove box

-water tank: shield against γ ,n of lab.

cryostat: Ar containment, low radioactivity steel, 5 shield against external γ radiation

re-entrant tube: separates atm Ar from UG Ar, thin-walled EF Cu¹⁰

LEGEND-1000 Work Breakdown Structure

and analysis simulation management left out:

Ge enrich. + detectors > 50% of investment

first infrastructure items funded \rightarrow can start now

procurement of steel for cryostat started

= MPG + BMBF + DFG + EU

0 2024-10-1

meeting strategy

KAT

nwingenheuer SC

LEGEND-1000 cost estimate

Cost basis

- bottom up cost estimate + schedule by Level 3 task manager
- started in 2021, regularly being updated
- cost uncertainties for vendor quote, ...
- biggest cost items germanium enrichment & detector production relatively well know from LEGEND-200
- in total ~3400 tasks in project management tool P6:
 schedule + invest + labor

LEG

Historical Cost (HC)
Catalog Price (CP)
Vendor Quote (VQ)
Vendor Estimate (VE)
Parametric (P)
Scientist/Engineering Judgement (EJ)

LEGEND-1000 technical schedule

Name		Vork		2017		2018		2019		0	2021		2022	
			Н1	H2	Н1	Н2	Н1	Н2	Н1	Н2	Н1	H2	Н1	Н2
LEGEND collaboration formed	•	٠												
LEGEND-200	2480d								_					
Construction	700d													
commissioning	80d]												ť
first data taking	300d													
screening campaign	150d													
detector assembly	50d													
continue data taking	1200d	1												
LEGEND-1000	10520d											_		
pre-conceptual design report												•		
DOE portfolio review		1										•		
NSF project	1720d	1												
proposal	420d	1												
NSF funding decision		1												
execution	1300d	1												
DOE project		1												
status review		1												
CD-1 and CD-3a		1												
CD-2 / 3		1												
R&D for electronics, clean pastics, crystal pulling	1800d	1										*		
enginering of LAr instr, water tank instr,	1200d]												
Borexino site ready for installation]												
Ge detector production	2100d]												
LNGS approval	370d													
approval Scientific Committee														
preliminary risk analysis	100d													
environmental authorization VINCA	150d													
Technical Design Report														
approval by LNGS director	120d													
construction	2400d													~
R&D for ASIC, cables	1500d													
cryostat constr at LNGS	400d													
water tank, building, clean room constr.	300d													
cryogenic infrastr, DAQ, glove boxes, LAr instr, water instr	200d													
commissioning	130d													
cryostat + water tank filling	90d													
first Ge detect deployment, testing	40d													
first data taking with subset of Ge det	200d													
data taking	600d]												

LEGEND-1000 technical schedule

Name	Work	2017		2018		2019		2020	0	2	
		Н1	H2	Н1	Н2	Н1	H2	Н1	Н2	н	
LEGEND collaboration formed	•	•							1		
LEGEND-200	2480d							-			
Construction	700d										
commissioning	80d										
first data taking	300d										
screening campaign	150d										
detector assembly	50d										
continue data taking	1200d										
LEGEND-1000	10520d										
pre-conceptual design report											
DOE portfolio review											
NSF project	1720d										
proposal	420d										
NSF funding decision											
execution	1300d										
DOE project											
status review											
CD-1 and CD-3a											
CD-2 / 3											
R&D for electronics, clean pastics, crystal pulling	1800d										
enginering of LAr instr, water tank instr,	1200d										
Borexino site ready for installation											
Ge detector production	2100d										
LNGS approval	370d										
approval Scientific Committee											
preliminary risk analysis	100d										
environmental authorization VINCA	150d										
Technical Design Report											
approval by LNGS director	120d										
construction	2400d										
R&D for ASIC, cables	1500d										

LEGEND-1000 consolidated project office

LEGEND-1000 consolidated risk management

Post-Mitigation Rating Summary						
Critical	0					
High	12					
Medium	22					
Low	70					
Very Low	34					
Retired	0					
Total Threats	138					
Total Opportunities	5					
Total Entries	143					

Post-Mitigation Matrix Summary (DOE and NSF)									
Due he hilling	Consequence								
Probability	Very Low	Low	Medium	High	Very High				
>80%	0	0	0	0	0				
>50% - 80%	0	0	0	0	0				
>25% - 50%	0	4	5	3	2				
>10% - 25%	1	17	8	11	7				
10%	6	27	29	12	6				

Risk Methodology

- ~170 threats
- Risks will be tracked in a Consolidated Risk Register
 - Currently DOE and NSF risks have been fully evaluated and reviewed.
 - International risks have been identified, but not yet fully evaluated.
- Developed from bottom-up through workshops, focused discussions, and management reviews
- Consolidated Risks will be managed according to the LEGEND-1000 DOE Risk Management Plan.

2024-10-1

meeting KAT strategy

nwingenheuer

16

SC

NSAC and APPEC statements

2023 NSAC long range plan

As the highest priority for new experiment construction, we recommend that the United States lead an international consortium that will undertake a neutrinoless double beta decay campaign, featuring the expeditious construction of ton-scale experiments, using different isotopes and complementary techniques.

APPEC strongly supports the CUPID and LEGEND 1000 doublebeta decay experiments selected in the US-European process and endorses the development of NEXT. APPEC strongly supports fully exploiting the potential of the KATRIN direct neutrino mass measurement and the development of a new generation of experiments beyond KATRIN.

2023 APPEC mid-term update

0)

Status of funding

- NSF: mid-scale proposal submitted (90 M USD, incl. contingency & escalation) NSF + Europe \rightarrow can build LEGEND-1000 with >30% of Ge
- DOE: CD-1 scheduled for November, shifted by DOE now Office of Science conducts prioritization of projects (before end of year) hope to schedule CD-1 for spring 2025, CD-3a for Ge procurement in Sept 2025 LEGEND-1000 ranked highest in 2021 portfolio review

Italy: INFN is strongly supporting LEGEND-1000 at LNGS with a global investment that exceeds 20 MEuro in the construction phase and several MEuro/year during operations (Marco Pallavicini)

Germany: Max Planck Society funding secured (cryostat, part of clean room, DAQ, ...) Verbundforschung not sufficient \rightarrow BMBF Forschungsinfrastruktur ERC grant of TUM: allowed to establish 2^{nd} crystal supplier (\rightarrow cost + schedule risk) excellence cluster TUM: support of people

Switzerland: expect constant funding profile

Poland: grant in 2022 from ministry, periodic funding from National Science Center

UK: STFC started prioritization process, submit proposal in 2025 if selected

Summary

nuclear / particle physics, and as yet unmeasured." Nobel Prize." (NSF review report)

- o best scenario: LEGEND and XLZD find $0_V\beta\beta$ for ⁷⁶Ge and ¹³⁶Xe (and dark matter)
- o If NSF proposal accepted (decision April 25) construction of LEGEND-1000 will start
- o some R&D still ongoing: ASIC for Ge readout, pure plastics, ... (have fall back options in case of delay)
- o LEGEND builds on the idea of Gerd Heusser and the realization by GERDA German groups should play a major role \rightarrow FIS funding needed co-spokesperson = Stefan Schönert, international project director = Bernhard Schwingenheuer

- o "Neutrinoless double beta decay ($0\nu\beta\beta$) is one of the most compelling outstanding issues in
 - "Reviewers and panelists all agree that this is the best chance for the community to win a
 - LEGEND-1000 ranked highest in DOE portfolio review in 2021 (compared to nEXO and CUPID)

2024-10-19 meeting strategy KAT

ngenheuei SC

