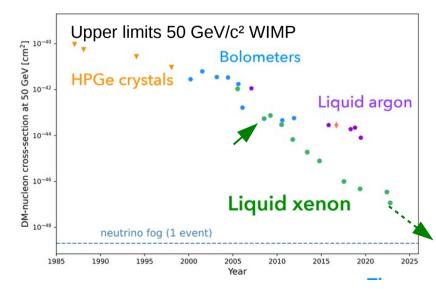
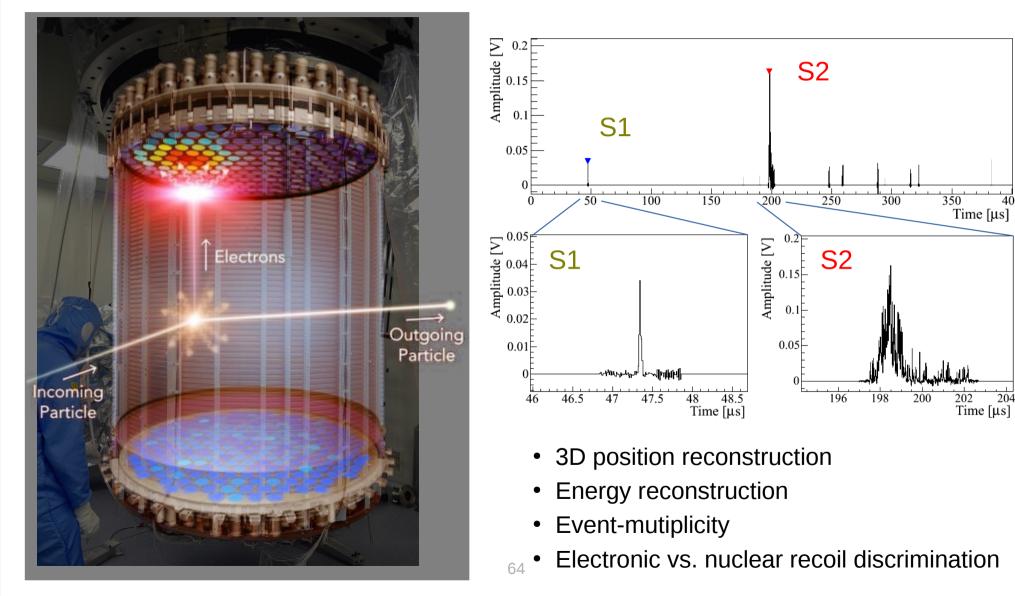

XLZD

A xenon-based low-background observatory for astroparticle physics



The XLZD Observatory


- Liquid Xenon (LXe) dual-phase TPC with 60t active target
- Lowest threshold (O(1) keV_{NR}) Lowest background
- Surrounded by 3 layers of active veto detectors
 - LXe "skin"
 - Neutron veto (Gd)
 - Muon Veto (water)
- Various subsystems to reduce backgrounds to neutrino level

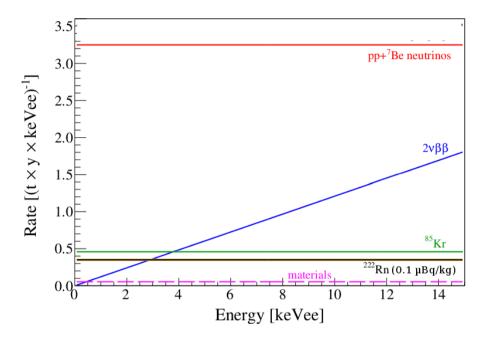
Dual-phase TPC

Dolgoshein, Lebedenko, Rodionov, JETP Lett. 11, 513 (1970)

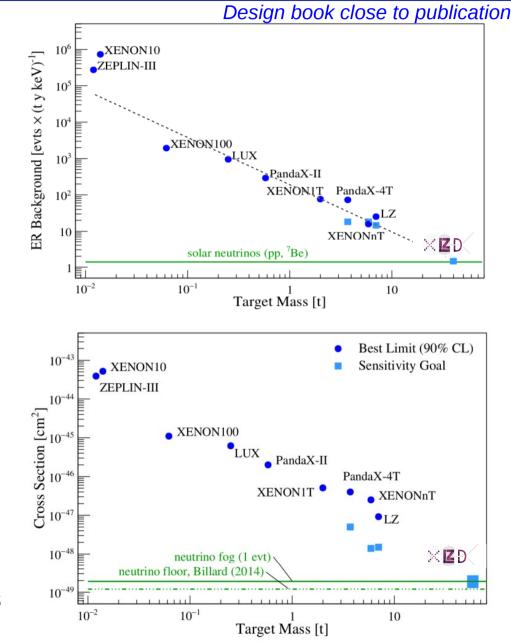
universitätfreiburg M. Schumann – XLZD

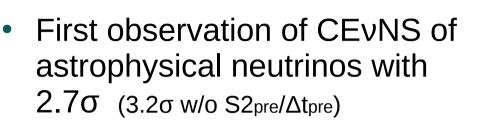
400

XLZD Nominal Design

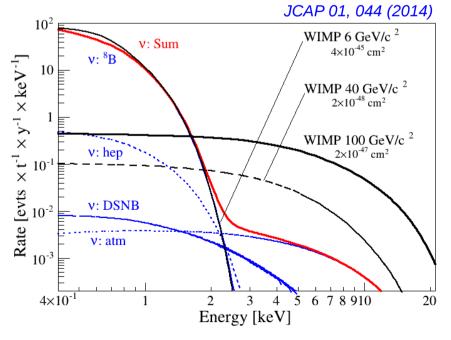

- 60t active LXe target (78t total)
- 2.97m height, 2.98m diameter
 (→ factor 2 larger than LZ and XENONnT)
- Drift field: 240-290 V/cm for optimal background rejection
- Two arrays of 3" low-background PMTs (2362 tubes in total)
- Double-wall Ti cryostat
- Early science with ~45t detector (flatter but same diameter)
 - → important for early commissioning and risk mitigation
- Design allows for straighforward upgrade to 80t TPC to acquire very large exposure faster

Design book close to publication

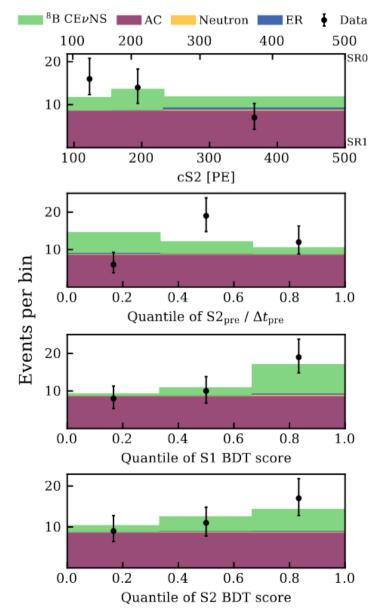

Background: Neutrinos


Reduce all other backgrounds by

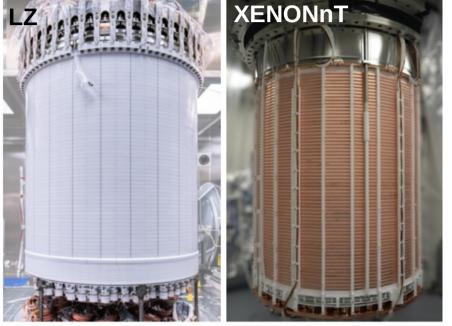
- Low-background materials, shielding
- Detector design, surface treatment
- Active vetoes (LXe, n, μ)
- ⁸⁵Kr removal (cryogenic distillation)
- Online ²²²Rn removal (cryogenic distillation)
- Precautions against ³H contamination
- Optimized HV system \rightarrow avoid accidentals

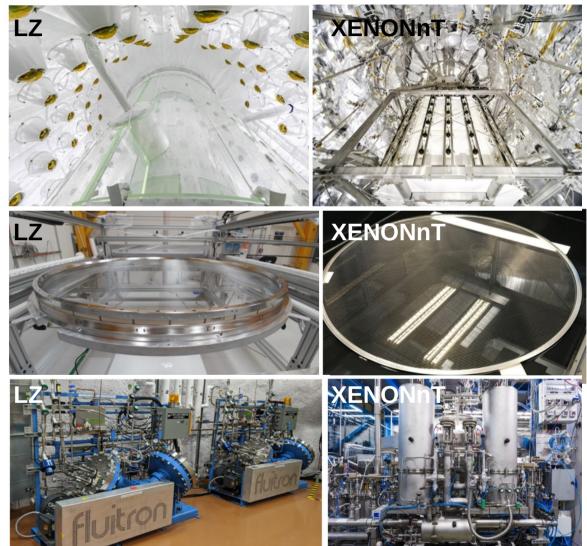




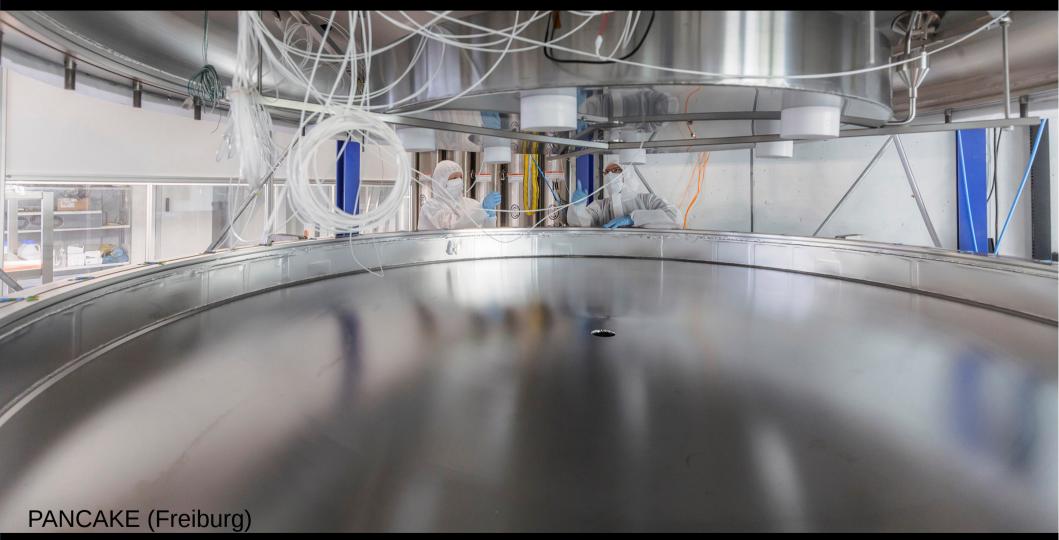

Evidence for ⁸B v-Floor

- 11 events above backgrounds in 3.51 t×y exposure
- First step into the ultimate background for WIMP searches



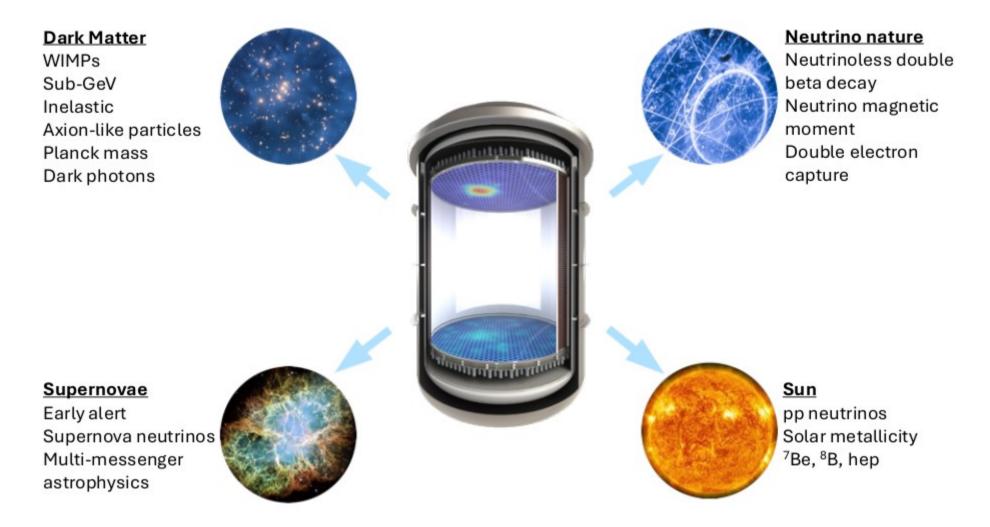


Two world-class demonstrators



- XENONnT and LZ are taking data
 → world-leading results
- Independent designs using the same detector principle
- Important guidance for XLZD design

Plus large-scale R&D Platforms

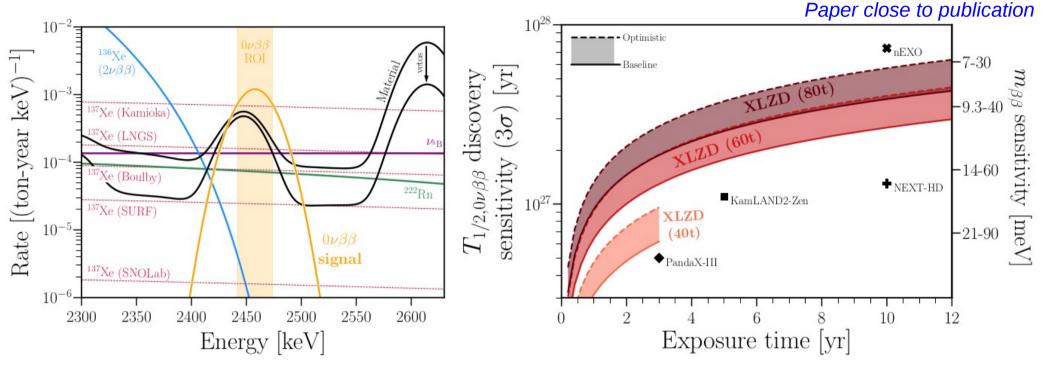

+Xenoscope (Zürich)

+LowRad (Münster)

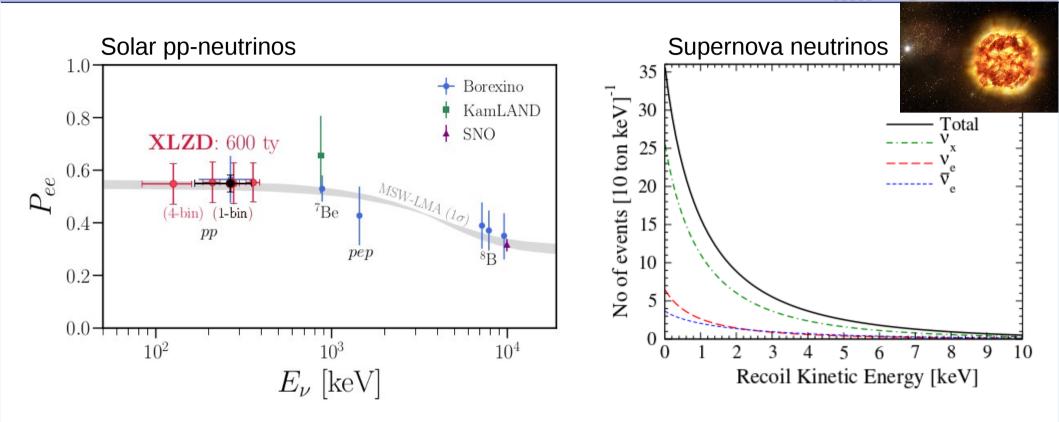
+possibly XMASS infrastructure (Kamioka)

XLZD Science

A xenon-based low-background observatory for astroparticle physics


Science I: Dark Matter

- Excellent sensitivity for spin-independent and spin-dependent WIMP-nucleon scattering
- Covers parameter space into the neutrino fog
- Minimum exposure: 200 t×y, aim for ~500 t×y
- Definite detector: up to 1000 t×y in case hint of signal is seen earlier


Science II: 0νββ

- ~10% natural abundance of ¹³⁶Xe (5.3t in 60t target)
 - \rightarrow no costly enrichment, Xe gas composition unchanged
- Resolution $\sigma/E\sim0.8\%$ at $Q_{\beta\beta}$ demonstrated
- Science channel determines lab depth
- Competitive sensitivity
- ¹²⁴Xe (0vECEC) also present in target

Science III: Neutrinos

- XLZD background dominated by neutrinos
 → precise measurements of rare processes possible
- Low-threshold: unique science possibilities

 → e.g. superova neutrinos (XENON already part of SNEWS)

More Science: Whitepaper

J. Phys. G 50, 013001 (2023)

CONTENTS

I. Introduction	6
A. An Observatory for Rare Events	6
B. Evidence for Dark Matter	6
C. Dark Matter Direct Detection	6
D. An Evolution of Scales	7
E. The Liquid Xenon Time Projection	
Chamber	8
F. Xenon as a Detector Medium	9
II. Dark Matter WIMPs	9
A. Spin-Independent WIMPs	11
B. Spin-Dependent Scattering	11
C. Effective Field Theory	12
1. Nonrelativistic Effective Field Theory	12
2. Chiral Effective Field Theory	13
3. WIMP-Pion Coupling	13
4. Three-Flavor EFT and the UV	13
D. Nuclear Structure Factors	14
E. Inelastic Scattering	15
F. Discriminating Between WIMP-Nucleus	
Responses	15
G. Scattering at High Momentum Transfer	16
H. Simplified Models	16
I. Electroweak Multiplet Dark Matter	17
J. Implications for Supersymmetry	17
K. Inelastic Dark Matter	18
L. Self-Interacting Dark Matter	18
M. Leptophilic Interactions	19
N. Modulation Searches	19
O. Confronting the Neutrino Fog	20

III. Broadening the Dark Matter Reach	21
A. Double Photoelectron Emission	21
B. Charge-Only Analysis	22
C. General Dark Matter-Induced Atomic	
Responses	22
D. Migdal Effect and Bremsstrahlung	24
E. Hydrogen Doping	24
F. Upscattered Dark Matter	24
G. Dark Matter Annihilation Products	25
H. Bosonic Super-WIMPs	25
1. Dark Photons	25
2. Axions and Axion-Like Particles	25
3. Solar Axions, Dark Matter, and Baryon	
Asymmetry	26
I. Luminous Dark Matter	26
J. Mirror Dark Matter	26
K. Magnetic Inelastic Dark Matter	26
L. Dark Matter around the Planck Mass	26
IV. Double Beta Processes	27
A. Neutrinoless Double Beta Decay of ¹³⁶ Xe	27
B. Double Electron Capture on ¹²⁴ Xe	28
C. Other Double-Beta Processes	29
V. Neutrinos for Astrophysics	29
A. Neutrino Interactions	29
1. Coherent Elastic Neutrino-Nucleus	
Scattering	30
2. Electroweak interaction	31
B. Solar Neutrinos	31

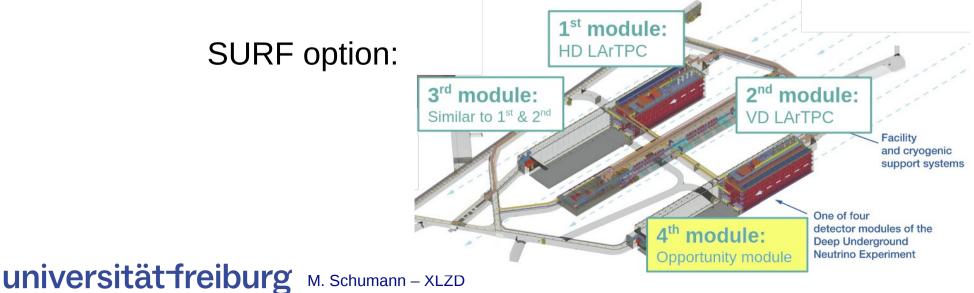
21	1. Boron-8 Solar Neutrinos (NR)	32	D. Intrinsic Background Mitigation
21	2. Hep Solar Neutrinos (NR)	32	E. Isolated Light and Charge Signals and
22	3. pp Solar Neutrinos (ER)	32	Accidental Coincidences
22	4. CNO Neutrinos (ER)	32	F. Monte-Carlo Simulation of Backgrounds
22	5. Neutrino Capture on Xenon-131 and		1. Background Model
24	Xenon-136	32	2. Generation of S1 and S2 Signals
24	C. Atmospheric Neutrinos (NR)	33	G. Discrimination
24	D. Supernova Neutrinos (NR)	33	G. Discrimination
24 25	1. Galactic Supernova Neutrinos	33	VIII. Complementarity with Other Experimental
25	2. Pre-Supernova Neutrinos	34	Efforts
25	3. Supernova Early Warning System	34	A. Crossing Symmetry for Thermal Relic
25	4. Diffuse Supernova Neutrinos	34	Particles
	E. Terrestrial Antineutrinos (ER)	35	B. Dark Matter at Colliders
26	F. Other Neutrino Physics	35	C. Indirect Dark Matter Searches
26	1. Measuring the Weinberg Angle	35	D. Measurements of Standard Model
26	2. Electron-Type Neutrino Survival		Parameters
26	Probability	35	E. Other Direct Dark Matter Searches
26 26	3. Searching for New Physics of Neutrinos	35	1. Solid State Detectors
20	······································		2. Liquid Target Detectors
27	VI. Additional Physics Channels	36	F. Neutrinoless Double Beta Decay
27	A. Solar Axions	36	Experiments
28	B. Neutrino Dipole Moments and Light		G. CEvNS Experiments
29	Mediators	36	H. Solar neutrino experiments
	C. Fractionally Charged Particles	38	I. Gravitational Wave Searches
29	D. Nucleon Decay	38	J. Xenon in Medical Physics
29	E. Short-Baseline Oscillations	38	K. Liquid Xenon TPCs for Homeland
			Security
30	VII. Background Considerations	39	L. Data-Intensive and Computational
31	A. Underground Laboratories	39	Sciences
31	B. Fiducialization	40	
	C. Material Selection	40	IX. Research Community Priority

Covers (probably) all science channels you can think of...

universitätfreiburg M. Schumann – XLZD

 $\frac{42}{42}$

 $\frac{42}{42}$


 $\frac{45}{45}$

 $\frac{46}{46}$

XLZD Siting

- Host laboratory not yet defined
- Minimal lab-depth driven by 0vββ
- Task-force has studied five laboratories and compiled a detailed siting report Boulby (UK), Kamioka (JP), LNGS (IT), SNOLab (CA), SURF (US)
 → depth, space, access, service, limitations etc.
- Boulby, LNGS and SURF are currently considered options
- Discussions with laboratories ongoing
- Lab access impacts some design decisions

XLZD @ LNGS

Space identified in Hall C

- XLZD in Hall C supported by LNGS scientific committee
- Regular contact with director and engineers
- Easy road access

XLZD @ LNGS

XLZD @ Boulby (UK)

Proposal to **build new laboratory at 1300 m.w.e.** taylored to XLZD

UK XLZD groups received 8.5 M£ to prepare XLZD @ Boulby from STFC

XLZD DE @ Boulby (UK)

- Boulby is the largest active mine in the UK
- Access via 2 shafts

XLZD Collaboration

www.xlzd.org

- Initial consortium established 2021

 → meetings, working groups, collaboration building
- September 2024: Collaboration formed Collaboration Agreement signed by 73 institutions
- 8 German groups: KIT, MPIK, Mainz, Münster, Freiburg, Dresden, Heidelberg, Darmstadt
- Collaboration has currently ~430 authors (~20% German)

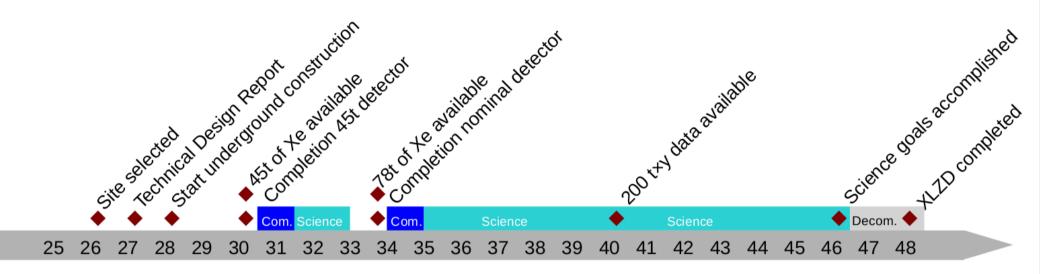
DARWIN

FIS Proposal: XLZD Project

- XLZD: a xenon-based low-background observatory for astroparticle physics
- Responsible Institution:

- Total cost construction: 254.4 M€ (incl. 19% VAT) ("European accounting" = no overheads, no funding of lab personnel, no ECRs)
- German contribution:

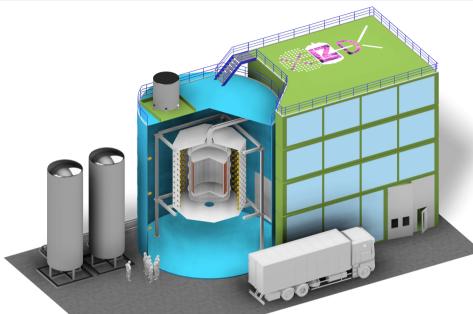
59.9 M€ (23.5%) supplemented by significant own funds (KIT, ...), incl. Xe gas (not included in this number)

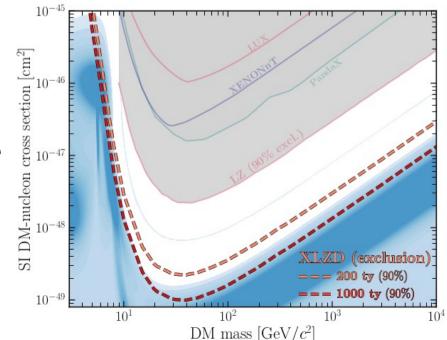

• Operation phase:

1.0 M€/year

- Goal: keep German leadership in LXe-based physics
- German contributions to vetoes, cryostat, TPC, Kr/Rn removal, DAQ, computing, screening, +Xe gas procurement (40 M€)
 → fully exploit our unique and proven expertise
- Possible capitalization of Xe gas after decomissioning: 40 M€

Timeline


- Technology well proven
- Detectors scaled up by factor ~500 in the last 20 years
- 2 demonstrated options exist for most subsystems or components
- Early procurement of Xe gas and photosensors important for timely start of science phase
- Science phases tied to Xe procurement, early science phase also for risk mitigation


Conclusions

- Exciting, unique, broad science
 → lots of complementarity
- XLZD endorsed by
 - APPEC mid-term roadmap
 - Helmholtz roadmap
 - P5 (US)
 - UKRI funds to develop XLZD
 - SERI roadmap (CH)
 - several national roadmaps
- XLZD is the merger of the two leading collaborations of the field
- Work is moving swiftly
- Goal: keep German leadership role
 - → capitalize key experience and competences

