

GridKa School 2019

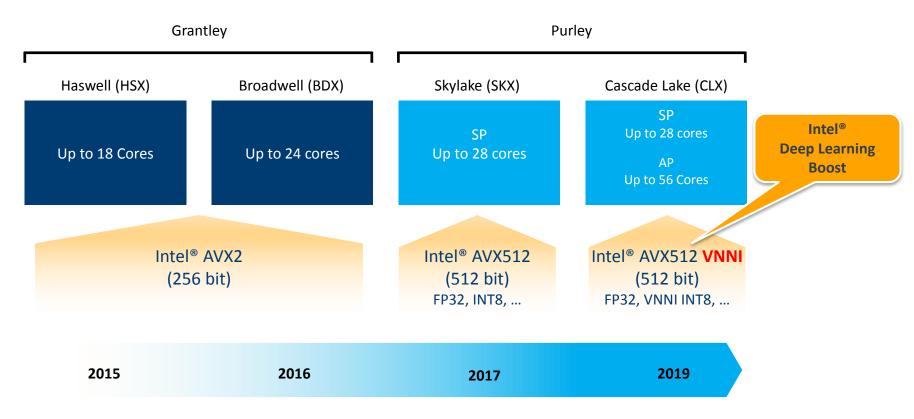
KIT, Campus North, FTU

INTEL'S HARDWARE & SOFTWARE SOLUTIONS -Directions for artificial intelligence

Edmund Preiss

Business Development Manager, EMEA Intel Computing Performance and Software Products (CPDP)

Intel Xeon Family – Latest Status


Intel Software Development Tools

- Intel Parallel Studio XE (IPS XE) Tool Suites
- News on the IPS XE 2020 Edition
- Upcoming **oneAPI** development tools concept

Intel optimized AI Solutions and Directions

EVOLUTION OF INTEL® XEON® PLATFORM

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel Xeon Family Update

Intel Software Development Tools

- Intel Parallel Studio XE (IPS XE) Tool Suites
- News on the IPS XE 2020 Edition
- Upcoming **oneAPI** development tools concept

Intel optimized AI Solutions and Directions

Code Modernization

Stage 1: Use Optimized Libraries

Stage 2: Compile with Architecture-specific Optimizations

Stage 3: Analysis and Tuning

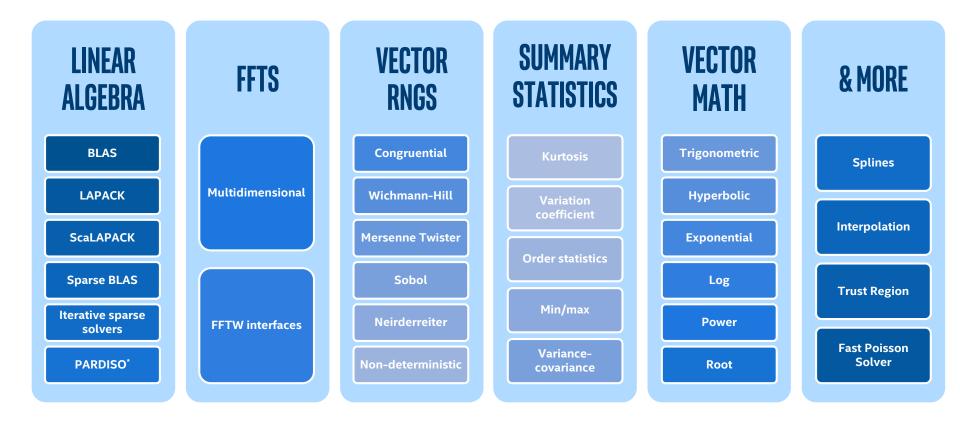
Stage 4: Check Correctness

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

What's Inside Intel[®] Parallel Studio XE

Comprehensive Software Development Tool Suite

COMPOSER EDITION	PROFESSIONAL EDITION	CLUSTER EDITION				
BUILD Compilers & Libraries	ANALYZE Analysis Tools	SCALE Cluster Tools				
C / C++ Compiler Optimizing Compiler Fortran Compiler Optimizing Compiler Optimizing Compiler	Intel® VTune™ Amplifier Performance Profiler Intel® Inspector Memory & Thread Debugger	Intel® MPI Library Message Passing Interface Library Intel® Trace Analyzer & Collector MPI Tuning & Analysis				
Intel® Threading Intel® Data Analytics Building Blocks Acceleration Library C++ Threading Library	Intel [®] Advisor Vectorization Optimization & Thread Prototyping	Intel [®] Cluster Checker Cluster Diagnostic Expert System				
Intel [®] Distribution for Python* High Performance Scripting						
Intel® Architecture Platforms		(intel) CORE Insider Insider				
Operating System: Windows*, Linux*, MacOS ¹ *						


More Power for Your Code - <u>software.intel.com/intel-parallel-studio-xe</u>

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

SELECTED INTEL PARALLEL STUDIO XE HIGHLIGHTS

What's Inside Intel[®] Math Kernel Library

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. ¹Available only in Intel[®] Parallel Studio Composer Edition.

Application Performance Snapshot (VTune Amplifier)

Application Performance Snapshot Application: heart demo Report creation date: 2019-03-07 06:52:12 Your application is MPI bound. Number of ranks: 80 Ranks per node: 20 This may be caused by high busy wait time inside the library (imbalance), non-optimal communication schema or MPI library settings. Use MPI OpenMP threads per rank: 4 profiling tools like Intel® Trace Analyzer and Collector to explore performance bottlenecks. HW Platform: Intel(R) Xeon(R) Processor code named Skylake Logical Core Count per node: 80 Collector type: Event-based counting driver Current run Target Delta MPI Time 31.40% <10% OpenMP Imbalance 23.61% <10% 2.05 44.40sMemory Stalls 31.05% <20% 0.00 35.09 Vectorization 2.83% ► >70% (MAX 2.06, MIN 2.04) SP GFLOPS DP GFLOPS Elapsed Time I/O Bound 0.00% <10% MPI Time **OpenMP** Imbalance Memory Stalls Vectorization 31.05%[▶] of pipeline slots 2.83% ▶ of Packed FP Operations 13.945 10.485 31.40% ▶ of Elapsed Time 23.61% of Elapsed Time Cache Stalls Instruction Mix: 15.15% of cycles MPI Imbalance SP FLOPs Memory Footprint 0.365 DRAM Stalls 0.00% of uOps 0.81% of Elapsed Time 0.30% of cycles Resident AVG PEAK DP FLOPs TOP 5 MPI Functions DRAM Bandwidth 8.60% of uOps Per node: 1747.98 MB 1684.79 MB 15.83 Waitall AVG 3.37 GB/s Packed: 2.83% from DP FP 84.24 MB Per rank 128-bit: 2.83% Barrier 7.96 NUMA 256-bit: 0.00% Virtual AVG Isend 4.31 PEAK 8.22% of remote accesses 512-bit: 0.00% 13477.43 MB 13306.10 MB Irecv Per node: Scalar: 97.18% from DP FP 758.94 MB 665.30 MB Init 0.99 Per rank: Non-FP Intel Omni-Path Fabric Usage 91.40% of uOps FP Arith/Mem Rd Instr. Ratio AVG. GB/sec Interconnect Bandwidth 0.30 Outgoing 0.87 FP Arith/Mem Wr Instr. Ratio 0.87 Incomina 0.78 Interconnect Packet Rate AVG, Million Packets/sec

Incoming:

(AVG 0.00, PEAK 0.00)

Outgoing:

(intal)

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

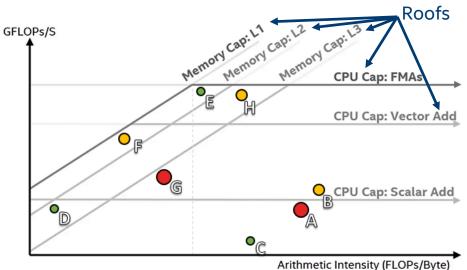
3.58

3.58

×

Find Effective Optimization Strategies

Intel Advisor: Cache-aware roofline analysis


Roofs Show Platform Limits Memory, cache & compute limits Dots Are Loops

Bigger, red dots take more time so optimization has a bigger impact Dots farther from a roof have more room for improvement

Higher Dot = Higher GFLOPs/sec

Optimization moves dots up

Algorithmic changes move dots horizontally

Which loops should we optimize?

- A and G are the best candidates
- B has room to improve, but will have less impact
- E, C, D, and H are poor candidates

Roofline tutorial video

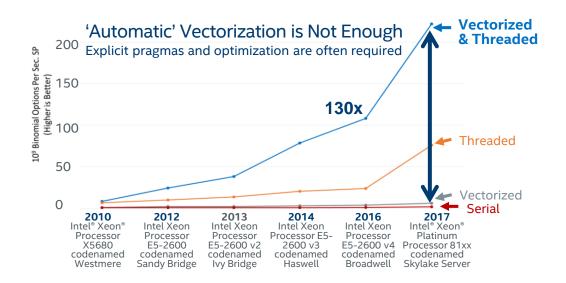
Analyze & Tune Application Performance & Scalability with Intel[®] VTune[™] Amplifier—Performance Profiler

nalysis Configuration Colle	ection Log Summary	Bottom-up Call	er/Callee	Top-down	rree Plat	form		
ouping: Function / Call Stack							~ <u>*</u> 0 :	2
		CPU Time 🔻		«	Context S	witch Time 📧	Context Swit	¢^
Function / Call Stack	Effective Time b Idle Poor Ok	y Utilization 🔊	Spin Time	Overhead Time	Wait Time	Inactive Time	Preemption	ŀ
IpdateBusinessAccount	7.915s		0s	0s	0s	0.055s	934	1
r main\$omp\$parallel_for@26	9 7.915s		0s	0s	0s	0.055s	934	
kmp_invoke_microi	as 7.915s 📕		0s	0s	0s	0.042s	815	
UpdateBusinessAccor	unt Os		0s	0s	0s	0.013s	119	
updateCustomerAccount	7.766s		Os	0s	0s	0.052s	1,111	
_kmpc_atomic_fixed8_add	2.772s		Os	0s				
_kmpc_critical	Os		2.021s	0s	0s	0.014s	262	
	> <						>	L
p: 🕇 🗕 🖝 🖻	r 5s 5.2s	5.4s 5.6s	5.8s	6s 6.		☑ Thread	~	1
OMP Worker Thread #2 (TI		بالبيانة والترابي		ا بداده را	11.11. ^	Runr	ning	
OMP Worker Thread #3 (TI		a a ser a ser de ser a ser				Contex	t Switches	
rtmtest openmp (TID: 12732		n an an an ann an Anna an Anna an Anna. An an an an an an an Anna an Anna an Anna an Anna an Anna an Anna an An	la na salahata da	<u>النبية الشمنة</u>			emption	
OMP Worker Thread #1 (TL.	Hallow An address of the state of the state	بالعظ ويبيبه البيابي	البال فإسباع فات	alped billing	ملالا بال		nchronization	
· · · · · · · · · · · · · · · · · · ·	عاديهم المتبرعات الديالة تباه يطاويه و	ب ب تعريفه النصف بالصاب ب	نه برموطنهنا	فليعراقين أررق	× ين ميلين	CPU 🗠 CPU		
CPU Time	And the second second second				يعرف وبال	🛛 🗠 Spin	and Overh	

Fast, Scalable Code, Faster

- Accurately profile C, C++, Java*, Python*, Go*, or any mix
- Optimize CPU/GPU, threading, memory, cache, storage & more
- Save time: rich analysis leads to insight

What's New in 2019 Release (Highlights)


- Simplified workflow for easier tuning
- I/O Analysis—Tune SPDK storage & DPDK network performance
- New Platform Profiler—Get insights into platformlevel performance, identify memory & storage bottlenecks & imbalances

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimize Vectorization & Threading with Intel[®] Advisor

Performance Increases Scale with Each New Hardware Generation

Modern Performant Code

- Vectorized for Intel[®] Advanced Vector Extensions (Intel[®] AVX-512 & Intel[®] AVX)
- Efficient memory access
- Threaded

Capabilities

- Adds & optimizes vectorization
- Analyzes memory patterns
- Quickly prototypes threading

Benchmark: Binomial Options Pricing Model software.intel.com/en-us/articles/binomial-options-pricing-model-code-for-intel-xeon-phi-coprocessor

Performance results are based on testing as of August 2017 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. See Vectorize & Thread or Performance Dies Configurations for 2010-2017 Benchmarks in Backup. Testing by Intel as of August 2017.

Learn More: http: intel.ly/advisor

sting by intel as of August 2017.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, & SSSE3 instruction sets & other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice Revision #20110804

Get Breakthrough Vectorization Performance

Intel[®] Advisor—Vectorization Advisor

Faster Vectorization Optimization

- Vectorize where it will pay off most
- Quickly ID what is blocking vectorization
- Tips for effective vectorization
- Safely force compiler vectorization
- Optimize memory stride

Data & Guidance You Need

- Compiler diagnostics + Performance Data + SIMD efficiency
- Detect problems & recommend fixes
- Loop-Carried Dependency Analysis
- Memory Access Patterns Analysis

FILTE		Loo	ps And Functio						٥	IFF	Sma	int Mode	, El Ac	OVISOR 201	19
ROOFL	+ - Function Call Sites and Loops	۵	Vector Issues	Self Time 🕶	Total Time	Туре	FLOPS GFLOPS	AI	Why No Vectorization?	<u> </u>	ed Loops Efficiency	Gain	≫ VL	in p	^
LINE	⊞ ^[] [loop in S252 at loops90.f:1172]	-	💡 1 Possible	3.129s 7.0%	3.129	Vectorized	0.191	0.115	🖬 1 vectorizat	AVX2	17%	1.36x	4; 8	99; 6; 1; 1	
	[loop in S2101 at loops90.f:1749]	-	2 Possible	2.765s 6.2%	2.765s	Scalar	0.1421	0.067	vectorizatio					12	1
	⊕ [loop in s442_\$omp\$parallel_for		💡 1 Ineffecti	. 1.492s 3.4%	1.492s	Vectorized+	0.5861	0.165		AVX2	14%	1.09x	8	30; 1; 3	
				1.108s 2.5%	1.108s	Vector Funct	3.9111	0.156		AVX2					
	+ 🖱 [loop in S353 at loops90.f:2381]		9 1 Possible	0.989s 2.2%	0.989s	Vectorized (2.0231	0.134		AVX2	27%	2.16x	8	6; 4; 1	~
	< >	<												>	

Optimize for Intel® Advanced Vector Extensions 512 (Intel® AVX-512) with or without access to Intel AVX-512 hardware

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel Xeon Family Update

Intel Software Development Tools

- Intel Parallel Studio XE (IPS XE) Tool Suites
- News on the IPS XE 2020 Edition
- Upcoming **oneAPI** development tools concept

Intel optimized AI Solutions and Directions

Key Updates for Intel[®] Parallel Studio XE 2020

Speed Artificial Intelligence Inferencing - Intel[®] Compiler and analyzer support for Vector Neural Instructions (VNNI) in Cascade Lake/AP platform

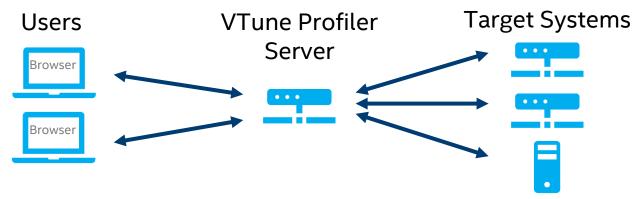
512GB DIMMs with Persistent Memory – Identify, Optimize & Tune Platforms for Intel[®] Optane[™] Persistent Memory with Intel[®] VTune[™] Amplifier

Extended Coarse Grain Profiling – Platform level collection and analysis in Intel[®] VTune[™] Amplifier

Cache Simulation Insights for Vectorization - Roofline analysis for L1, L2 L3, DRAM in Intel[®] Advisor

Expanded standard support — More Fortran 2018 features & Expanded support of C++17 with initial C++20 support

Latest Processor Support - Intel[®] Xeon[®] Scalable Processors (codenamed Cascade Lake / Cascade Lake AP)


New OS Support – Clear Linux & Amazon Linux 2*

* Supported features of tools and libraries may vary by instances and configurations

Intel[®] VTune[™] Profiler Server Architecture Just launch your browser and go

2020 Preview Feature

Easier profiling

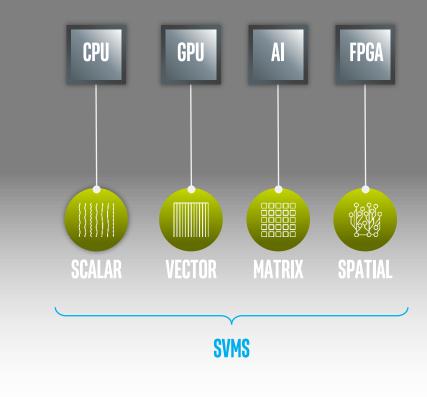
- Access with a web browser no install required by users
- Share results all results available to all users with server access
- Profile any system on the network server installs collector on the target

What's Coming in Intel[®] Parallel Studio XE 2020 Coming Q3'2019

- Intel[®] Math Kernel Library
 - Increased AVX512 Optimizations for Complex Vector Math Functions
 - Strided Vector Math API
- Intel[®] Data Analytics Acceleration Library
 - Performance improvements and feature improvements such as
 - Gradient Boosted Trees for large dimensional data sets
 - Extended Z-score support for PCA algorithm
 - XGBoost accelerated with DAAL

Intel Xeon Family Update

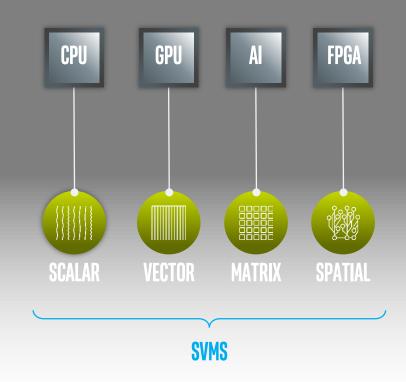
Intel Software Development Tools


- Intel Parallel Studio XE (IPS XE) Tool Suites
- News on the IPS XE 2020 Edition
- Upcoming **oneAPI** development tools concept

Intel optimized AI Solutions and Directions

DIVERSE WORKLOADS REQUIRE DIVERSE ARCHITECTURES

The future is a **diverse** mix of scalar, vector, matrix, and spatial **architectures** deployed in CPU, GPU, AI, FPGA and other accelerators


PROGRAMMING CHALLENGE

Diverse set of data-centric hardware

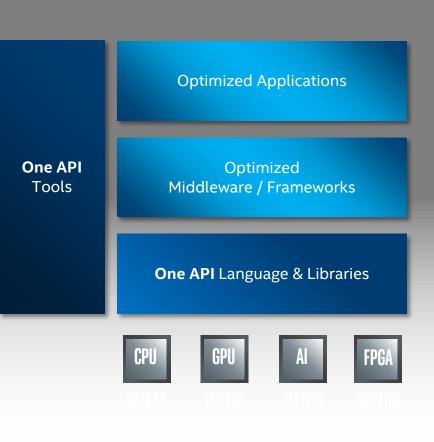
No common programming language or APIs

Inconsistent tool support across platforms

Each platform requires unique software investment

INTEL'S ONE API CORE CONCEPT

Project oneAPI delivers a unified programming model to simplify development across diverse architectures


Common developer experience across Scalar, Vector, Matrix and Spatial (SVMS) architecture

Unified and simplified language and libraries for expressing parallelism

Uncompromised native high-level language performance

Support for CPU, GPU, AI and FPGA

Based on industry standards and open specifications

ONE API FOR CROSS-ARCHITECTURE PERFORMANCE

Optimized Applications Optimized Middleware & Frameworks One API Product **Direct Programming API-Based Programming** DPC++ Library Analysis & Math Threading **Debug Tools** Porting Data VTune™ Tool Parallel Analytics/ML ML Comm DNN Advisor C++Debugger Rendering Video Processing GPU CPU **FPG**A

Some capabilities may differ per architecture.

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel Confidential - CNDA required

Intel Xeon Family Update

Intel Software Development Tools

- Intel Parallel Studio XE (IPS XE) Tool Suites
- News on the IPS XE 2020 Edition
- Upcoming **oneAPI** development tools concept

Intel optimized AI Solutions and Directions

ARTIFICIAL Intelligence

is the ability of machines to learn from experience, without explicit programming, in order to perform cognitive functions associated with the human mind

ARTIFICIAL INTELLIGENCE

MACHINE LEARNING

Algorithms whose performance improve as they are exposed to more data over time

DEEP LEARNING

Subset of machine learning in which multi-layered neural networks learn from vast amounts of data

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

		ARTIFICIAL INTELLIGENCE
	Solution Architects	Al Solutions Catalog (Public & Internal) Platforms Finance Healthcare Healthcare Finance Healthcare Finance Healthcare Finance Healthcare Finance Healthcare Finance Healthcare Health
	TOOLKITS App Developers	DEEP LEARNING DEPLOYMENT DEEP LEARNING DEPLOYMENT OpenVINO™ † Intel® Movidius™ SDK Open Visual Inference & Neural Network Optimization toolkit for inference deployment on CPU, processor graphics, FPGA & VPU using TF, Caffe* & MXNet* Optimized inference deployment for all Intel® Movidius™ VPUs using TensorFlow* & Caffe*
FL	LIBRARIES Data Scientists	MACHINE LEARNING LIBRARIES DEEP LEARNING FRAMEWORKS Python R Distributed • Scikit-learn • Cart • MlLib (on Spark) • Pandas • MlLib (on Spark) • NumPy • Cart • Pandas • MlLib (on Spark) • NumPy • Cart • E0071 • MlLib (on Spark) • Mahout • Mahout • TensorFlow* MXNet* Caffe* BigDL/Spark* • Caffe2 PyTorch* PaddlePaddle*
I G A E	FOUNDATION Library Developers	ANALYTICS, MACHINE & DEEP LEARNING PRIMITIVES DEEP LEARNING GRAPH COMPILER Python DAAL MKL-DNN clDNN Intel distribution optimized for machine learning) Intel® Data Analytics Acceleration Library (for machine learning) Open-source deep neural network functions for CPU, processor graphics Open-sourced compiler for deep learning model computations optimized for multiple devices (CPU, GPU, NNP) using multiple frameworks (TF, MXNet, ONNX)
L N C C E [†] Formerly the Intel [®] Computer *Other names and brands may All products, computer systems	HARDWARE IT System Architects	AI FOUNDATION DEEP LEARNING ACCELERATORS
Optimization Copyright © 2018		ALINTEL.COM

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Components Comparison : Intel MKL-DNN vs Intel MKL

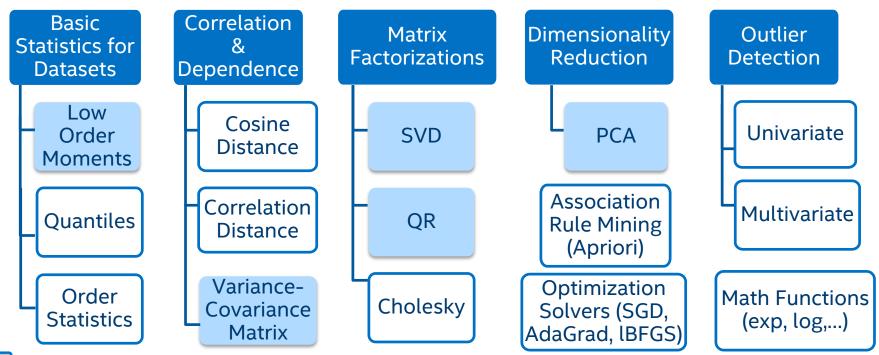
MKL-DNN (Open Source)

- Convolution
- Pooling

- ReLU
- Inner Product

Normalization

	MKL (Ma	ath Kernel Lib	rary)	
Linear Algebra	Fast Fourier Transforms	Vector Math	Summary Statistics	And More
 BLAS LAPACK ScaLAPACK Sparse BLAS Sparse Solvers Iterative PARDISO* Cluster Sparse Solver 	 Multidimensional FFTW interfaces Cluster FFT 	 Trigonometric Hyperbolic Exponential Log Power Root Vector RNGs 	 Kurtosis Variation coefficient Order statistics Min/max Variance- covariance 	 Splines Interpolation Trust Region Fast Poisson Solver

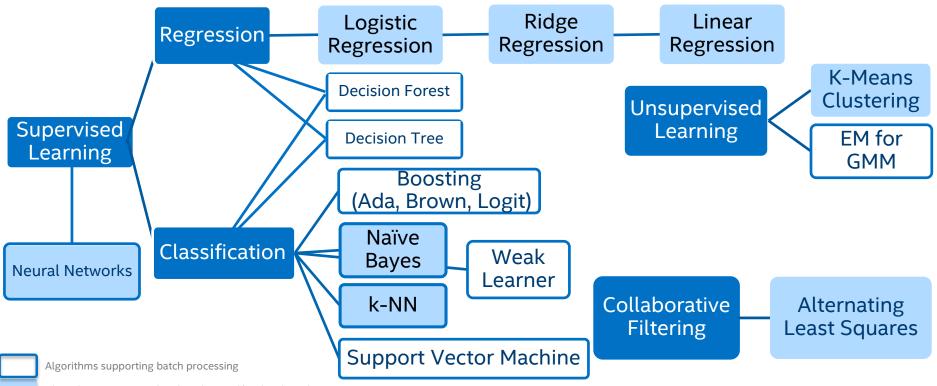

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel Confidential under CNDA

Data Transformation & Analysis Algorithms

Intel[®] Data Analytics Acceleration Library

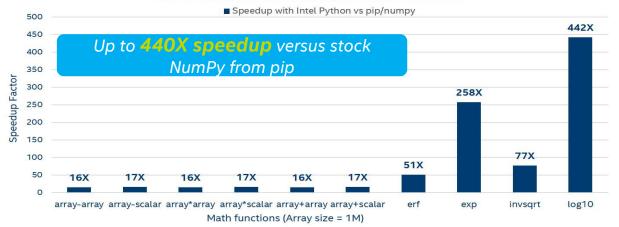
Algorithms supporting batch processing


Algorithms supporting batch, online and/or distributed processing

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Machine Learning Algorithms

Intel® Data Analytics Acceleration Library


Algorithms supporting batch, online and/or distributed processing

Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Faster Python* with Intel® Distribution for Python

Intel® Distribution for Python* Performance Speedups for Select Math Functions on Intel® Xeon™ Processors

Configuration: Hardware: Intel[®] Xeom[®] CPU E5-2609 v4 @ 2.20GHz (2 sockets, 22 cores per socket, 1 thread per core – HT is off), 256GB DDR4 @ 2400MHz. Software: Stock CentoS Linux release 7.3.1611 (Core), python 3.6.2, pip 9.0.1, numpy 1.13.1, stojku 0.19.1, skiki-learn 0.19.0. Intel[®] Distribution for Python* 2018 Gold: mkl 2018.0.0 intel_4, daal. 2018.0.0.20170814, numpy 1.13.1 py36_Intel_3, openmp 2018.0.0 intel_7, scipy 0.19.1 npt13py36_Intel_11, sciki-learn 0.18.2 npt13py36_Intel_3

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to any. You should consult other informance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information and performance, Benchmark Source: Intel Corporation.

Optimization Molice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include. SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804, *Other brands and names are the property of their respective owners.

Learn More: software.intel.com/distribution-for-python

Software & workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark & MobileMark, are measured using specific computer systems, components, software, operations & functions. Any change to any of those factors may cause the results to vary. You should consult other information & performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance.

Optimization Notice ²Paid versions only. Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSE3 instruction sets and other optimizations, intel does not uparantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microparchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Intel-Optimized AI Frameworks

Popular DL Frameworks are now optimized for CPU!

CHOOSE YOUR FAVORITE FRAMEWORK

See installation guides at ai.intel.com/framework-optimizations/

SEE ALSO: Machine Learning Libraries for Python (Scikit-learn, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MlLib on Spark, Mahout) *Limited availability today Other names and brands may be claimed as the property of others.

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

INTEL® XEON® PROCESSOR PLATFORM PERFORMANCE

Hardware plus optimized software

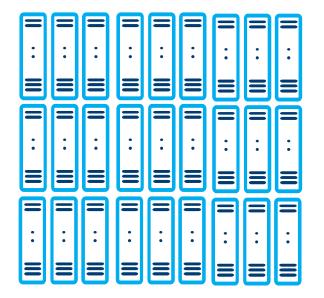
INFERENCE THROUGHPUT

TRAINING THROUGHPUT

Intel® Xeon® Platinum 8180 Processor higher Intel optimized Caffe GoogleNet v1 with Intel® MKL inference throughput compared to Intel® Xeon® Processor E5-2699 v3 with BVLC-Caffe

Inference and training throughput uses FP32 instructions

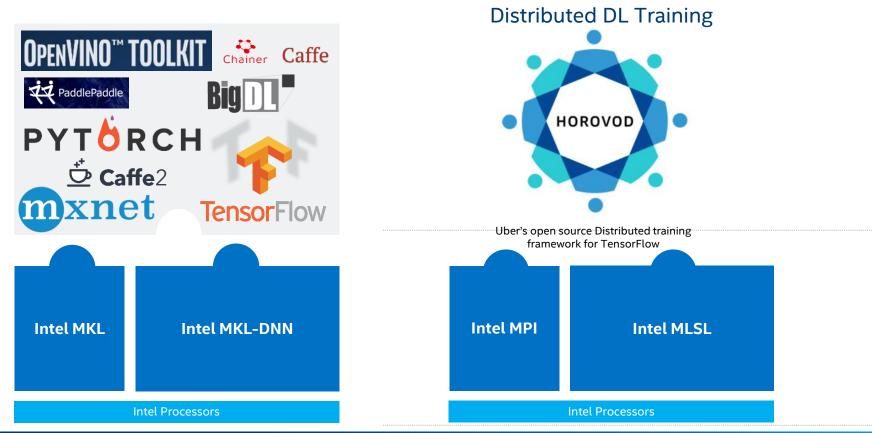
Intel® Xeon® Platinum 8180 Processor higher Intel Optimized Caffe AlexNet with Intel® MKL training throughput compared to Intel® Xeon® Processor E5-2699 v3 with BVLC-Caffe



Deliver significant AI performance with hardware and software optimizations on Intel® Xeon® Scalable Family

Up to 191X Intel[®] Xeon[®] Platinum 8180 Processor higher Intel optimized Caffe Resnet50 with Intel[®] MKL inference throughput compared to Intel[®] Xeon[®] Processor E5-2699 v3 with BVLC-Caffe Up to 93X Intel[®] Xeon[®] Platinum 8180 Processor higher Intel optimized Caffe Resnet50 with Intel[®] MKL training throughput compared to Intel[®] Xeon[®] Processor E5-2699 v3 with BVLC-Caffe

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components software, operations and functions. Any charge to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases information and performance tests to assist you in fully evaluating source: Intel measured as of June 2017. Configurationas See the last slide in this presentation, and brands may be claimed as the property of others.



Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

AI (ML & DL) SOFTWARE STACK FOR INTEL® PROCESSORS

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

3

More details on Intel and AI at GridKa School

Join the Intel hands-on Training : Thursday afternoon at 13:15

Title : Enhance Machine Learning Performance with Intel[®] Software tools

1st Session:

- Introduction of Intel tools for ML and DL
 - DLBoost, VNNI instructions ; Intel distribution for Python

2nd session:

- Classical ML
 - Numpy and MKL, K-Means, clustering and DAAL4PY Distributed ML algorithms

3rd session:

- Intel MKL for Deep Neural Network Intel optimized Framework and Tensorflow
- Distributed Tensorflow with Horovod

THANK YOU

Legal Disclaimer & Optimization Notice

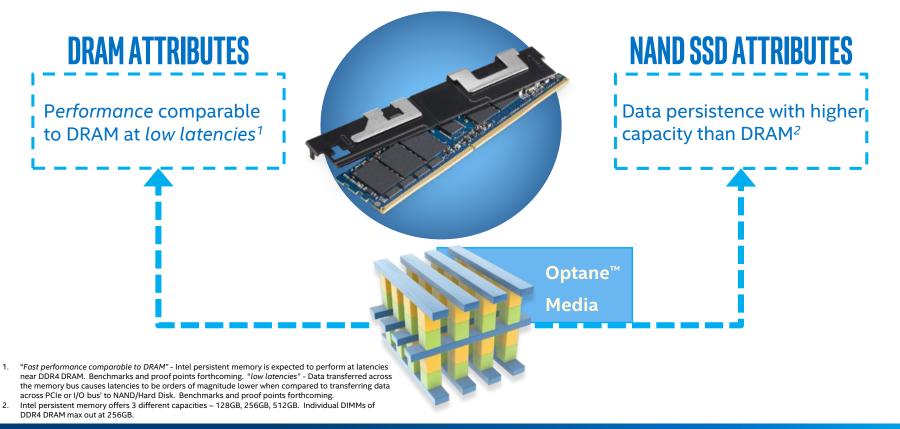
Performance results are based on testing as of August 2017 to September 2018 and may not reflect all publicly available security updates. See configuration disclosure for details. No product can be absolutely secure.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit <u>www.intel.com/benchmarks</u>.

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of Intel Corporation or its subsidiaries in the U.S. and other countries.

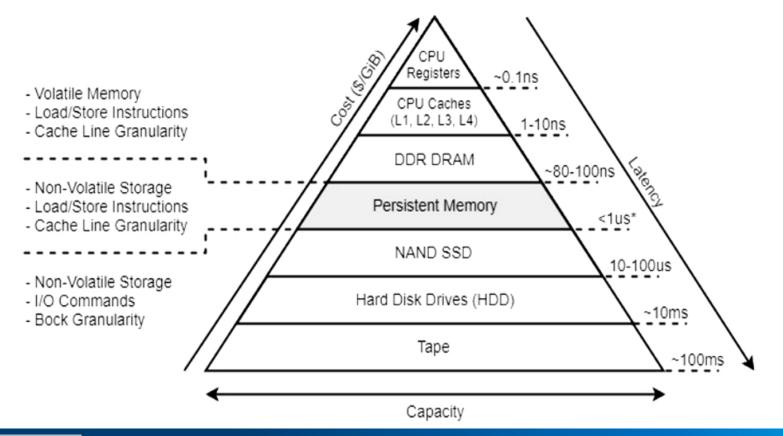
Optimization Notice


Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice. Notice revision #20110804

Software

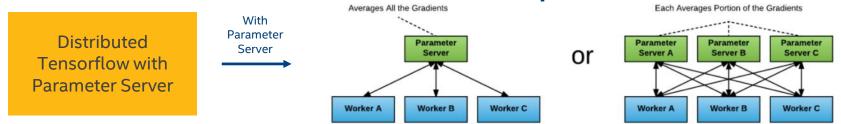
INTEL® OPTANE™ DC PERSISTENT MEMORY

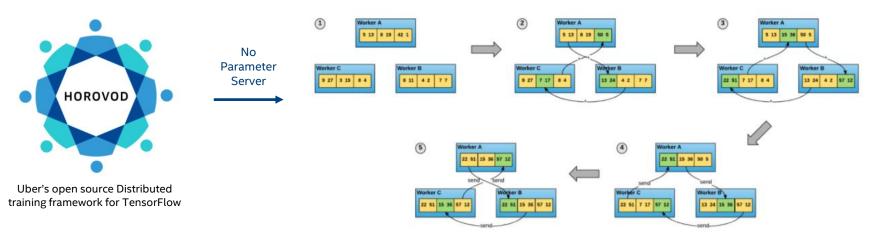
THE BEST OF BOTH WORLDS WITH INTEL[®] OPTANE[™] DC PERSISTENT MEMORY



Optimization Notice

Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.


Latency Estimates for different Memory and Storage Devices


Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

inte

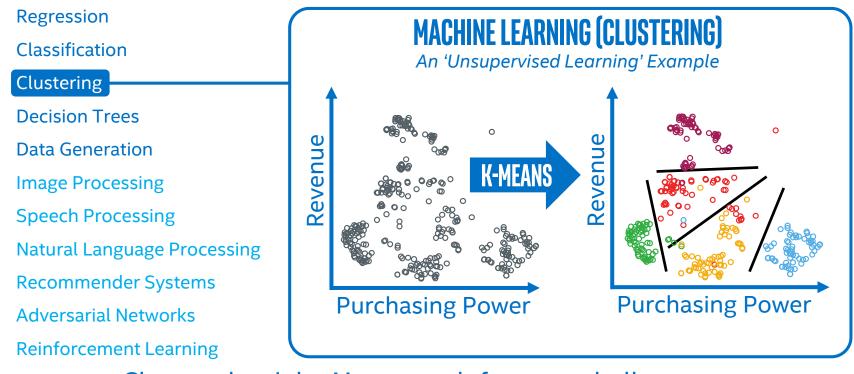
Distributed TensorFlow[™] Compare

The parameter server model for distributed training jobs can be configured with different ratios of parameter servers to workers, each with different performance profiles.

The ring all-reduce algorithm allows worker nodes to average gradients and disperse them to all nodes without the need for a parameter server.

Source: https://eng.uber.com/horovod/

íntel


Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and brands may be claimed as the property of others. Copyright © 2018, Intel Corporation.

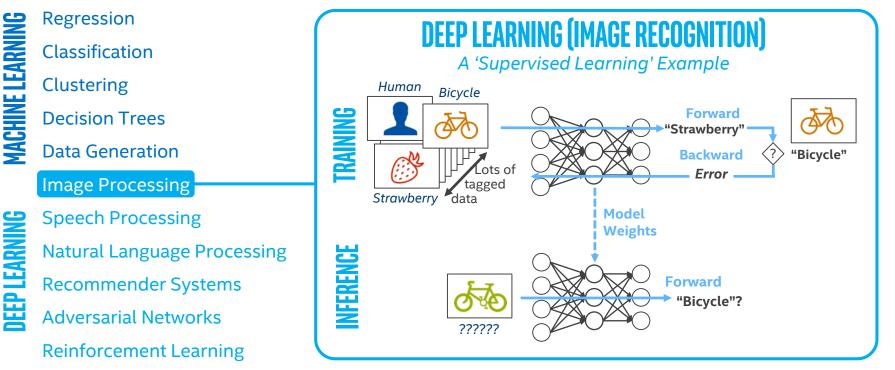
Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

41

UNSUPERVISED LEARNING EXAMPLE

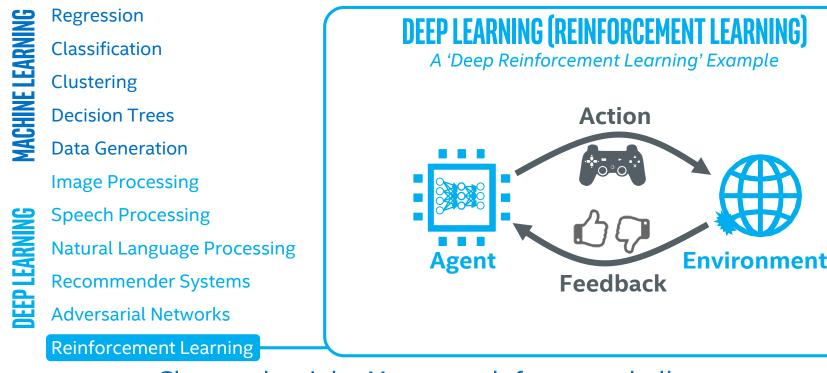
Choose the right AI approach for your challenge


Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

NE LEARNIN

EEP LEAR

SUPERVISED LEARNING EXAMPLE



Choose the right AI approach for your challenge

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

REINFORCEMENT LEARNING EXAMPLE

Choose the right AI approach for your challenge

Optimization Notice Copyright © 2018, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel-Optimized Frameworks: How To Get?

Check out our intel.ai for the framework optimizations page

INTEL® OPTIMIZATION FOR TENSORFLOW*

This Python*-based deep learning framework is designed for ease of use and extensibility on modern deep neural networks and has been optimized for use on Intel* Xeon* processors.

MXNET*

The open-source, deep learning framework MONet* includes built-in support for the Intel® Plath Kernel Library (Intel® MCL) and optimizations for Intel® Advanced Vector Extensions 2 (Intel® AVX2) and Intel® Advanced Vector Extension 512 (Intel® AVX-512) Instructions.

xnet

PYTORCH

through the nGraph Compiler.

Intel continues to accelerate and streamline PyTorch on Intel architecture, most notably Intel® Xeon® Scalable processors, both using Intel® Math Kernel Library for

Deep Neural Networks (Intel® MKL-DNN) directly and making sure PyTorch is ready for

our next generation of performance improvements both in software and hardware

INTEL® OPTIMIZATION FOR CAFFE*

The Intel® Optimization for Caffe® provides improved performance for of the most popular frameworks when running on Intel® Xeon® processors.

С	affe
🕘 Learn More	🔿 аны
Documentation	(->) Resources

Installation example for optimized Tensorflow / Keras for a Medial Sample application https://docs.google.com/document/d/1AAsWLSfYBx-pYfvzFQxOYi4Z1zx3TAEB5534s61Lf8w/edit?usp=sharing

Topology Examples : https://www.intel.ai/framework-optimizations

