
Dr. Fabio Baruffa & Shailen Sobhee

Technical Consulting Engineers, Intel IAGS

Intel® optimized AI frameworks:
Tensorflow*

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Linear classifier: Single Perceptron

Linear classifier can solve the AND problem.

X1 X2

0 0 0

y

0 1 0

1 0 0

1 1 1

0

X1

X2

1

0

0
_

+

__

x1

x2

T Output

w1

w2

We need to train the
network to compute the
‘unknown’ weights and
threshold

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Linear classifier: Single Perceptron

X1 X2

0 0 0

y

0 1 0

1 0 0

1 1 1

0

X1

X2

1

0

0
_

+

__

X1

X2

1.5 Output

1

1

X1 x 1 + X2 x 1 = Z

if (Z > 1.5) Output = 1

Linear classifier can solve the AND problem.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

Linear classifier: Single Perceptron

X1 X2

0 0 0

y

0 1 1

1 0 1

1 1 1

0

X1

X2

1

1

1+

+

+

_

X1

X2

0.5 Output

1

1

X1 x 1 + X2 x 1 = Z

if (Z > 0.5) Output = 1

Linear classifier can solve the OR problem.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

What is wrong with Linear Classifiers on XOR gate?

XOR
The counter

example to all
models

We need two
straight line for

separation

X1 X2

0 0 0

y

0 1 1

1 0 1

1 1 0

0

X1

X2

0

1

1+

+-

-
A single linear classifier cannot solve the XOR problem.

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Multilayer perceptron

1.5 0.5

Input

Input

+1

+1

+1

+1

-2
Output

X1 X2

0 0 0

y

0 1 1

1 0 1

1 1 0

Threshold to 0 or 1

1

0

1 x 1

0 x 1

1 x 1

0 x 1

1 < 1.5
0 x -2

(1 x 1) + (0 x 1) < 1.5 = 0

(1x1) + (0x-2) + (0x1)= 1 > 0.5 =1

XOR = (X1 and not X2) OR (Not X1 and X2)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
8

Multilayer perceptron

1.5 0.5

Input

Input

+1

+1

+1

+1

-2
Output

X1 X2

0 0 0

y

0 1 1

1 0 1

1 1 0

Threshold to 0 or 1

XOR = (X1 and not X2) OR (Not X1 and X2)

1

1

1 x 1

1 x 1

1 x 1

1 x 1

2 > 1.5
1 x -2

(1 x 1) + (1 x 1) = 2 > 1.5

(1x1) + (1x -2) + (1x1) = 0 < .5 =0

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
9

Motivation for Neural Nets

1.5 0.5

Input

Input

+1

+1

+1

+1

-2 Output ≈

▪ Use biology as inspiration for mathematical model

▪ Get signals from previous neurons

▪ Generate signals (or not) according to inputs

▪ Pass signals on to next neurons≈

▪ By layering many neurons, can create complex model

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

The Neuron

Activation Function

ReLU (rectified linear unit)

https://en.wikibooks.org/wiki/Artificial_Neural_Networks/Print_Version

Deep Learning Neural Network

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

Deep Learning Neural Network

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Images recognition
• Training:

• Use neural network
techniques to gather
common information
among one category
objects. ➔Model

• Inference:

• Use the gathered
common information
(model) for prediction
or/and generation.

http://cs231n.stanford.edu/

http://cs231n.stanford.edu/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Training technique

• Techniques used for training and inference

• Forward propagation

• Go through the network in forward direction

• Yield result of the model

• Backward propagation

• Go through the network in backward direction

• Check how different results of the model is against correct answers

• Update model parameters based on the differences

Forward Propagation

Backward Propagation

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Training and inference

Input

Deep Learning
Neural Network

Result

Forward
Propagation

Input

Deep Learning
Neural Network

Result

Answer

Difference
(Loss)

Forward
Propagation

Backward
Propagation

Training Inference

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Neural network playground

https://playground.tensorflow.org

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
16

Deep Neural Network
(DNN)

Convolution Neural Network
(CNN)

Recurrent Neural Network
(RNN)

Image Recognition, Outline of object in an image, Video processing Image captioning, Text generation, Language translation

Hierarchical Sequential

extract position invariant features model units in sequence

Learns to recognize patterns across space Learns to recognize patterns across time

The lines and curves I saw will help me recognize the faces and objects What I spoke last will impact what I will speak next

(1) Comparative Study of CNN and RNN for Natural Language Processing : https://arxiv.org/pdf/1702.01923.pdf

In empirical evaluations, Chung et al. (2014) and Jozefowicz et al. (2015) found there is no clear
winner between GRU and LSTM. In many tasks, they yield comparable performance and tuning
hyperparameters like layer size is often more important than picking the ideal architecture (1)

Types of RNN

Long Short-Term Memory
(LSTM)

Gated Recurrent Unit
(GRU)

The number of neurons in a layer (hidden size) and batch size can make DNN performance vary dramatically. This suggests that optimization of these two parameters is crucial to good
performance of both CNNs and RNNs (1)

Image Source: https://www.slideshare.net/sheemap/convolutional-neural-netwoks

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

• Fully Connected

• Convolution 2D

• Convolution 3D

• Batch Normalization

• ReLU

• Dropout

• RNN

• …

Intel Confidential

Deep learning operations

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
18

Why do we need deep learning frameworks?
• Questions:

• How long will it take to write code to implement those processes?

• Are you willing to write code to implement those processes every time when
you would like to develop a new topology?

• Deep learning frameworks implemented these complicated operations for you

• Easy to use

• High efficiency for development of topologies

• Even if you don’t understand mathematic theories underneath

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

SEE ALSO: Machine Learning Libraries for Python (Scikit-learn, Pandas, NumPy), R (Cart, randomForest, e1071), Distributed (MlLib on Spark, Mahout)
*Limited availability today
Other names and brands may be claimed as the property of others.

* * *

Popular DL Frameworks are now optimized for CPU!

See installation guides at ai.intel.com/framework-optimizations/

More under optimization:

TM

*

*
*

*
FOR

Intel® AI optimized frameworks

19

https://www.intelnervana.com/framework-optimizations/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel Processors

AI (ML & DL) Software Stack for Intel® Processors

Intel® MKL is a proprietary performance library for wide range of math and
science applications
Distribution: Intel Registration Center, package repositories (apt, yum, conda,
pip), Intel® Parallel Studio XE, Intel® System Studio

Deep learning and AI ecosystem includes edge and datacenter applications.
• Open source frameworks (Tensorflow*, MXNet*, PyTorch*, PaddlePaddle*)
• Intel deep learning products (, BigDL, OpenVINO™ toolkit)
• In-house user applications

Intel® MKL and Intel® MKL-DNN optimize deep learning and machine learning
applications for Intel® processors :
• Through the collaboration with framework maintainers to upstream changes

(Tensorflow*, MXNet*, PyTorch, PaddlePaddle*)
• Through Intel-optimized forks (Caffe*)
• By partnering to enable proprietary solutions

Intel® MKL-DNN is an open source performance library for deep learning
applications (available at https://github.com/intel/mkl-dnn)

• Fast open source implementations for wide range of DNN functions

• Early access to new and experimental functionality

• Open for community contributionsIntel MKL-DNNIntel MKL

20

https://github.com/intel/mkl-dnn

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
22

What is tensorflow?
• Framework for math using Computation Graphs

• Has features specifically for machine learning

• Primary interface is Python, integrates NumPy

• Designed to be flexible, scalable and deployable

• Easy to install including the Intel® optimization via
using conda

• conda install tensorflow -c intel

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
23

Computation graph

mul

add

Nodes represent computations

add

input

input

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
24

Computation graph

mul

add

add

input

input

Edges represent numerical data
flowing through the graph

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
25

Data flow

add

input

input

mul

add

7

3

7

7

3

3

21

10

31

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

1. Define a computation graph

2. Run the graph

data Predictions

26

Two-step programming pattern

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
27

Define a computational graph
>>> a = tf.placeholder(tf.float32, name=“input1”)

>>> b = tf.placeholder(tf.float32, name=“input2”)

>>> c = tf.add(a, b, name=“my_add_op”)

>>> d = tf.multiply(a, c, name="my_mul_op")

default

input2 b

input1 a

c d
my
add
op

my
mul
op

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
28

Run the graph

>>> sess = tf.Session()

We use a Session object to execute graphs.
Each Session is dedicated to a single graph.

Session

Graph: default

sess

Variable values:

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
29

Setup the configuration (optional)
>>> config = tf.ConfigProto(inter_op_parallelism_threads=2,

intra_op_parallelism_threads=44)

>>> tf.Session(config=config)

Session

Graph: default

sess

Variable values:

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
30

Initialize the values

>>> feed_dict = {a: 3.0, b: 2.0}

Session

Graph: default

sess

Variable values:

placeholders require data to fill them in when the graph is run

We do this by creating a dictionary mapping Tensor keys to numeric values

feed_dict: {a: 3.0, b: 2.0}

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
31

Execute the graph

>>> out = sess.run(d, feed_dict=feed_dict)

Session

Graph: default

sess

Variable values:

We execute the graph with sess.run(fetches, feed_dict)

sess.run returns the fetched values as a NumPy array

run()

fetches: d

feed_dict: feed_dict
feed_dict: {a: 3.0, b: 2.0}

default

input2 b

input1 a

c d

my
add
op

my
mul
op

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
32

Main tensorflow api
Graph

▪ Container for operations and tensors

Operation

▪ Nodes in the graph

▪ Represent computations

Tensor

▪ Edges in the graph

▪ Represent data Source: https://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-
Scalars-Vectors-Matrices-and-Tensors/

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
35

Neural network

Use biology as inspiration for math model

Neurons:

▪ Get signals from previous neurons

▪ Generate signal (or not) according to inputs

▪ Pass that signal on to future neurons

By layering many neurons, can create complex model

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
36

activation
function

The neuron outputs
the transformed data

Some form of computation
transforms the inputs

Data flows
into neuron
from previous
layers

Reads roughly the same as a TensorFlow graph

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

x3

w3

w2

w1

37

activation
function

Reads roughly the same as a TensorFlow graph

b

x1

x2

z = x1w1+ x2w2+ x3w3+b

f(z)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
38

Types of Activation Functions

▪ Sigmoid function

– Smooth transition in output
between (0,1)

▪ Tanh function

– Smooth transition in output
between (-1,1)

▪ ReLU function

– f(x) = max(x,0)

▪ Step function

– f(x) = (0,1)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
39

W
var

add

Inputs

b
var

activation

matmul

Represents the function 𝑧 = 𝑊𝑡𝑋 + 𝑏

Inside a single neuron (TensorFlow graph)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
40

W
var

add

Inputs

b
var

activation

matmul

The activation function applies
a non-linear transformation and
passes it along to the next layer

Inside a single neuron (TensorFlow graph)

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® TensorFlow* optimizations

1. Operator optimizations: Replace default (Eigen) kernels
by highly-optimized kernels (using Intel® MKL-DNN)

2. Graph optimizations: Fusion, Layout Propagation

3. System optimizations: Threading model

43

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Operator optimizations

In TensorFlow,
computation graph is a
data-flow graph.

MatMul

Examples Weights

Bias

Add

ReLU

45

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Operator optimizations
Replace default (Eigen) kernels by

highly-optimized kernels (using
Intel® MKL-DNN)

Intel® MKL-DNN has optimized a set
of TensorFlow operations.

Library is open-source
(https://github.com/intel/mkl-
dnn) and downloaded
automatically when building
TensorFlow.

Forward Backward

Conv2D Conv2DGrad

Relu, TanH, ELU ReLUGrad, TanHGrad,

ELUGrad

MaxPooling MaxPoolingGrad

AvgPooling AvgPoolingGrad

BatchNorm BatchNormGrad

LRN LRNGrad

MatMul, Concat

46

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

On Intel processors a high % of time is
typically spent in BW-limited ops

▪ ~40% of ResNet-50, even higher for
inference

The solution is to fuse BW-limited ops
with convolutions or one with another
to reduce the # of memory accesses

▪ Conv+ReLU+Sum, BatchNorm+ReLU, etc

▪ Done for inference, WIP for training

The FWKs are expected to be able to
detect fusion opportunities

▪ IntelCaffe already supports this

Major impact on implementation

▪ All the impls. must be made aware of the
fusion to get max performance

▪ Intel MKL-DNN team is looking for
scalable solutions to this problem

Fusing computations
Conv

Conv

Sum ReLU

Conv

Conv+Sum+ReLU

47

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Graph optimizations: fusion

Conv2D

BiasAdd

Input Filter

Bias
Conv2DWithBias

Input Filter Bias

Before Merge After Merge

48

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Graph optimizations: layout propagation

• All MKL-DNN operators use highly-optimized layouts for TensorFlow tensors.

Conv2D

ReLU

Input Filter

Shape

MklConv2D

Input Filter

Convert

Convert Convert

MklReLU

Convert

Shape

Convert

Initial Graph After Layout Conversions

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

After Layout Propagation

49

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

More on memory channels: Memory layouts
Most popular memory layouts for image recognition
are nhwc and nchw

▪ Challenging for Intel processors either for vectorization or
for memory accesses (cache thrashing)

Intel MKL-DNN convolutions use blocked layouts

▪ Example: nhwc with channels blocked by 16 – nChw16c

▪ Convolutions define which layouts are to be used by other
primitives

▪ Optimized frameworks track memory layouts and perform
reorders only when necessary

nchw

R
e
o
rd
er
s

nChw16c

50

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Data Layout has a BIG Impact
• Continuous access to avoid gather/scatter

• Have iterations in inner most loop to ensure high vector utilization

• Maximize data reuse; e.g. weights in a convolution layer

Overhead of layout conversion is sometimes negligible, compared with
operating on unoptimized layout

21 18 32 6 3

1 8 0 3 26

40 9 22 76 81

23 44 81 32 11

5 38 10 11 1

8 92 37 29 44

11 9 22 3 26

3 47 29 88 1

15 16 22 46 12

29 9 13 11 1

21 8 18 92 .. 1 11 ..

21 18 … 1 .. 8 92 ..

for i= 1 to N # batch size
for j = 1 to C # number of channels, image RGB = 3 channels

for k = 1 to H # height
for l = 1 to W # width

dot_product(…)

Channel based
(NCHW)

Pixel based
(NHWC)

51

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Low-precision inference

Proven only for certain CNNs
by IntelCaffe at the moment

A trained float32 model
quantized to int8

Some operations still run in
float32 to preserve accuracy

PrimitiveFP32 FP32

FP32 model F32 model

Quantize model

INT8 model

Scale

Primitive
FP32
INT8

INT8

52

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

System optimizations: load balancing

TensorFlow graphs offer opportunities for parallel
execution.

Threading model

1. inter_op_parallelism_threads = max number
of operators that can be executed in parallel

2. intra_op_parallelism_threads = max number
of threads to use for executing an operator

3. OMP_NUM_THREADS = MKL-DNN equivalent of
intra_op_parallelism_threads

MklConv2D

Input Filter

Convert Convert

MklReLU

Convert

Shape

53

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

>>> config = tf.ConfigProto()

>>> config.intra_op_parallelism_threads = 56

>>> config.inter_op_parallelism_threads = 2

>>> tf.Session(config=config)

tf.ConfigProto is used to set the inter_op_parallelism_threads and
intra_op_parallelism_threads configurations of the Session object.

https://www.tensorflow.org/performance/performance_guide#tensorflow_with_intel_mkl_dnn

54

performance GUIDE

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Maximize TensorFlow* Performance on CPU: Considerations and Recommendations for Inference
Workloads: https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-
considerations-and-recommendations-for-inference

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_AFFINITY"] = "granularity=fine,compact,1,0"

os.environ["KMP_SETTINGS"] = "0"

os.environ["OMP_NUM_THREADS"] = “56"

Example setting MKL variables with python os.environ :

performance GUIDE

Intel Tensorflow* install guide is available →
https://software.intel.com/en-

us/articles/intel-optimization-for-tensorflow-
installation-guide

55

https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

benchmarks/tf_bench.sh

57

Tensorflow*

Tensorflow* with Intel® MKL-DNN

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Forward Propagation

Backward Propagation

Cat Person

Ground TruthNetwork Output

Complex Networks with billions of parameters can take days to train on a modern processor

Hence, the need to reduce time-to-train using a cluster of processing nodes

59

Deep learning training

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

https://www.mathworks.com/help/nnet/ug/introduction-to-convolutional-neural-networks.html

CNN

Convolution Neural Network Layers

60

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

CONVOLUTION = Multiply – ADD op.

61

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
62

Deep learning training & Inference

Input

Deep Learning
Neural Network

Result

Answer

Difference
(Loss)

Forward
Propagation

Backward
Propagation

Training

Input

Deep Learning
Neural Network

Result

Forward
Propagation

Inference

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
64

Image classification of the Mnist dataset

Source:https://www.easy-tensorflow.com/tf-tutorials/convolutional-neural-nets-cnns

• Implementation of a simple Convolutional Neural Network in TensorFlow with
two convolutional layers, followed by two fully-connected layers at the end

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
65

Tensorflow: cnn_mnist.ipynb

Copyright © 2019, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel
microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the
availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent
optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture
are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice.

Notice revision #20110804

66

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance
tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks.

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

Copyright © 2019, Intel Corporation. All rights reserved. Intel, the Intel logo, Pentium, Xeon, Core, VTune, OpenVINO, Cilk, are trademarks of
Intel Corporation or its subsidiaries in the U.S. and other countries.

https://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/benchmarks

