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Predicting a binary event

consider the (presumably) simplest task in forecasting, namely, the
prediction of a binary event, such as

I precipitation tomorrow

I recession

I Champions League final

I medical diagnosis

I recidivism

I 2020 presidential election

we let Y = 1 denote a positive and Y = 0 a negative outcome

a forecast for Y might take any of the following forms:
I a hard classifier predicts a positive (1) or negative (0) outcome

I a probabilistic classifier specifies a probability p ∈ [0, 1] for a
positive outcome

I a feature provides a value x ∈ R, with the understanding that the
larger the feature, the more likely a positive outcome
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Example: Precipitation forecasts over Africa

key example in this presentation
I 24-hour ahead precipitation forecasts over northern tropical Africa (Vogel

et al. 2018)

I based on the numerical weather prediction (NWP) ensemble operated by
the European Centre for Medium-Range Weather Forecasts (ECMWF)

I the ensemble has 50 members, each of which provides a hard classifier

I the resulting probability of precipitation (PoP) forecast equals the
fraction of members that predict precipitation

I our interest is in comparing the ECMWF PoP forecast to statistically
postprocessed and climatological (i.e., purely observation based) forecasts

Vogel, P., Knippertz, P., Fink, A. H., Schlueter, A. and Gneiting, T. (2018).
Skill of global raw and postprocessed ensemble predictions of rainfall over
northern tropical Africa. Weather and Forecasting, 33, 369–388.
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Receiver operating characteristic (ROC) curves

receiver operating characteristic (ROC) curves are outrageously popular
tools for evaluating features (in general) and probabilistic classifiers (in
particular)
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characteristic’’ or ‘‘ROC’’

proposed in signal detection (Egan, Greenberg and Schulman 1961) and
cognitive psychology (Swets 1973)

vastly popular ever since Swets (Science, 1988), particularly in the life
sciences and machine learning
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Receiver operating characteristic (ROC) curves

generally, we can use any threshold value x to construct a hard
classifier for the binary event Y from the feature X
I if X > x we predict a positive outcome (Y = 1)

I if X ≤ x we predict a negative outcome (Y = 0)

in practice,
I we are given a dataset

{(xi , yi ) : i = 1, . . . , n},

where xi ∈ R is the feature and yi ∈ {0, 1} the associated binary
outcome

I by thresholding at x ∈ R, we get a hard classifier

I with true positive (TP : xi > x , yi = 1), true negative (TN :
xi < x , yi = 0), false positive (FP : xi > x , yi = 0) and false
negative (FN : xi < x , yi = 1) instances in the dataset
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Receiver operating characteristic (ROC) curves

let P and N denote the overall numbers of positive and negative
cases in the dataset

given any threshold value x ,
I let TP(x), FN(x), FP(x) and TN(x) denote the respective numbers of

true positive, false negative, false positive and true negative cases

I the hit rate (HR) at x is

HR(x) =
TP(x)

TP(x) + FN(x)
=

TP(x)

P

I the false alarm rate (FAR) at x is

FAR(x) =
FP(x)

FP(x) + TN(x)
=

FP(x)

N

the ROC curve plots the hit rate HR(x) vs. the false alarm rate
FAR(x) as the decision threshold x varies

the area under the ROC curve (AUC) is a positively oriented
measure of predictive ability
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Area under the ROC curve (AUC)

the area under the ROC curve (AUC) is a positively oriented
measure of predictive ability

I appealing interpretation as the probability that a (randomly chosen)
feature value under a positive outcome is larger than a (randomly
chosen) value under a negative outcome:

AUC = P(X ′ > X | Y ′ = 1,Y = 0)

I AUC = (D + 1)/2 in terms of Somers’ D (Somers 1962)

I AUC = 1/2 for a useless feature that is independent of the binary
outcome

I AUC = 1 for a perfect feature
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A formal approach to ROC curves

formal setting

X real-valued feature
Y binary outcome
P joint distribution of (X ,Y )

F1(x) = P(X ≤ x |Y = 1)
F0(x) = P(X ≤ x |Y = 0)

the raw ROC diagnostic is the set of all points of the form

(FAR(x),HR(x)) ∈ [0, 1]× [0, 1]

threshold x ∈ R, FAR(x) = 1− F0(x), HR(x) = 1− F1(x)

the ROC curve is the linearly interpolated raw ROC diagnostic
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Properties of ROC curves and AUC

interpretation as function: for continuous, strictly in-
creasing F0 and F1,

R(α) = 1− F1(F−1
0 (1− α)), α = FAR(x) ∈ (0, 1)

ensuing math fact: characterization of ROC curves

invariance of ROC curves and AUC under

I changes in class proportions

I strictly increasing transformations of the
feature X

consequence: ROC curves and AUC

I apply to real-valued or ordinal features X on
arbitrary scales, but

I do not consider calibration nor economic value
for probabilistic classifiers

no rainfall

rainfall

0.00 0.25 0.50 0.75 1.00
Probability of precipitation

Vogel et al. (2018)
                                                                            n = 5449

AUC = 0.77

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False alarm rate

H
it 

ra
te

ROC curve



Properties of ROC curves and AUC

interpretation as function: for continuous, strictly in-
creasing F0 and F1,

R(α) = 1− F1(F−1
0 (1− α)), α = FAR(x) ∈ (0, 1)

ensuing math fact: characterization of ROC curves

invariance of ROC curves and AUC under

I changes in class proportions

I strictly increasing transformations of the
feature X

consequence: ROC curves and AUC

I apply to real-valued or ordinal features X on
arbitrary scales, but

I do not consider calibration nor economic value
for probabilistic classifiers

no rainfall

rainfall

0.00 0.25 0.50 0.75 1.00
Probability of precipitation

Vogel et al. (2018)
                                                                            n = 5449

AUC = 0.77

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False alarm rate

H
it 

ra
te

ROC curve



Properties of ROC curves and AUC

interpretation as function: for continuous, strictly in-
creasing F0 and F1,

R(α) = 1− F1(F−1
0 (1− α)), α = FAR(x) ∈ (0, 1)

ensuing math fact: characterization of ROC curves

invariance of ROC curves and AUC under

I changes in class proportions

I strictly increasing transformations of the
feature X

consequence: ROC curves and AUC

I apply to real-valued or ordinal features X on
arbitrary scales, but

I do not consider calibration nor economic value
for probabilistic classifiers

no rainfall

rainfall

0.00 0.25 0.50 0.75 1.00
Probability of precipitation

Vogel et al. (2018)
                                                                            n = 5449

AUC = 0.77

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False alarm rate

H
it 

ra
te

ROC curve



Properties of ROC curves and AUC

interpretation as function: for continuous, strictly in-
creasing F0 and F1,

R(α) = 1− F1(F−1
0 (1− α)), α = FAR(x) ∈ (0, 1)

ensuing math fact: characterization of ROC curves

invariance of ROC curves and AUC under

I changes in class proportions

I strictly increasing transformations of the
feature X

consequence: ROC curves and AUC

I apply to real-valued or ordinal features X on
arbitrary scales, but

I do not consider calibration nor economic value
for probabilistic classifiers

no rainfall

rainfall

0.00 0.25 0.50 0.75 1.00
Probability of precipitation

Vogel et al. (2018)
                                                                            n = 5449

AUC = 0.77

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False alarm rate

H
it 

ra
te

ROC curve



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Back to our example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA



Evaluating classifier performance

1. Predicting a binary event

2. Receiver operating characteristic (ROC) curves:
What are they, and what are they good for?

3. Tools for evaluating probabilistic classifiers: A triptych



ROC curves address potential predictive ability (only)

invariance under strictly monotone transformations has stark
implications:

I ROC curves and AUC can be used to assess the potential predictive
ability of any real-valued feature

I however, in the case of probabilistic classifiers, both calibration and
actual value are ignored

I hence, ROC curves should be used in concert with reliability
diagrams and Murphy diagrams

reliability diagrams

I assess calibration, by plotting the empirical conditional event
frequency vs. the predicted probability

Murphy diagrams

I assess actual economic value, by considering all (!) proper scoring
rules simultaneously
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Proper scoring rules

a scoring rule is a function S(p, y) that assigns a numerical score to a
probability forecast p with binary outcome y

we take scores to be negatively oriented: the smaller, the better

a proper scoring rule rewards honest and careful forecasting: truth telling
is the best strategy in expectation

every proper scoring rule can be represented as a weighted mixture over
elementary scores

Sθ(p, y) =


θ, y = 0, p > θ,

1− θ, y = 1, p ≤ θ,
0, otherwise,

where the index θ ∈ (0, 1) reflects a decision maker’s cost ratio; e.g.

I for the quadratic or Brier score, S(p, y) = (p − y)2, the mixture is (twice)
uniform over θ ∈ (0, 1)

I for the logarithmic score, S(p, y) = − log p, the mixture measure has
density ∝ (θ(1− θ))−1
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Murphy diagrams

a Murphy curve plots the mean elementary score Sθ of a probabilistic
classifier as a function of θ ∈ (0, 1)

I the Brier score equals (twice) the area under the Murphy curve

I the widely reported misclassification rate equals (twice) the height of the
Murphy curve at θ = 1/2

a Murphy diagram plots the curves of competing forecasters in a single
graph, as implemented in the R package murphydiagram
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covers all economic scenarios simultaneously and eliminates the need to
choose a proper scoring rule (Murphy 1977; Ehm et al. 2016)
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ROC curve, reliability diagram, and Murphy diagram
. . . a triptych

according to Wikipedia, a triptych is “a piece of art [. . . ] that is divided
into three sections”

Merode Altarpiece by Robert Campin, ca. 1427–32
Metropolitan Museum of Art

Source: Wikimedia
https://commons.wikimedia.org/wiki/File:Robert_Campin_-_L%27_Annonciation_-_1425.jpg

https://commons.wikimedia.org/wiki/File:Robert_Campin_-_L%27_Annonciation_-_1425.jpg
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Example

24-hour precipitation forecasts over the West Sahel region in northern tropical
Africa in monsoon season 2014 (Vogel et al. 2018)

competing probability of precipi-
tation (PoP) forecasts

I ENS ECMWF NWP
ensemble

I EMOS postprocessed by
ensemble model output
statistics

I BMA postprocessed by
Bayesian model averaging

I EPC extended probabilistic
climatology
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ROC curve, reliability diagram, and Murphy diagram
. . . the triptych in practice

ROC curves assess potential predictive ability

reliability diagrams demonstrate calibration

Murphy diagrams visualize actual (normalized) costs for a decision maker
with expense ratio θ/(1− θ)
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ROC curve, reliability diagram, and Murphy diagram
. . . the triptych in practice

ROC curves assess potential predictive ability

reliability diagrams demonstrate calibration

Murphy diagrams visualize actual (normalized) costs for a decision maker
with expense ratio θ/(1− θ)
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ROC curve, reliability diagram, and Murphy diagram
. . . the triptych in practice

ROC curves assess potential predictive ability

reliability diagrams demonstrate calibration

Murphy diagrams visualize actual (normalized) costs for a decision maker
with expense ratio θ/(1− θ)

ENS      0.77
EPC      0.72
BMA      0.76
EMOS   0.76

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False Alarm Rate

H
it 

R
at

e

West Sahel

●

●
●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●
●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel ENS

●

●

● ●

● ●

● ●

●

●
●

●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EPC

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel EMOS

●

●

●

●

●

●

●
●

●

● ●

●

●

● ● ●

●

0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
Forecast probability

O
bs

er
ve

d 
re

la
tiv

e 
fr

eq
ue

nc
y

West Sahel BMA

ENS

EPC

BMA

EMOS

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.25 0.50 0.75 1.00

Parameter θ

E
le

m
en

ta
ry

 s
co

re

West Sahel



ROC curve, reliability diagram, and Murphy diagram
. . . the triptych in practice

ROC curves assess potential predictive ability

reliability diagrams demonstrate calibration

Murphy diagrams visualize actual (normalized) costs for a decision maker
with expense ratio θ/(1− θ)
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