
Kubernetes meets Data Scientists

Prof. Dr. Peter Tröger 

Beuth University of Applied Sciences, Berlin

GridKa Summer School

August 27th 2019

Beuth

• ~ 13.000 students

• One of the largest
universities for applied
science („Fachhochschule“)
in Germany

• Mechanical engineering,
electrical engineering,
architecture, media
computer science, data
science, biotechnology,
biophysics, event
management …

�2

Datexis

• Professors and PhDs in data science, databases, distributed
systems, and mathematics

• Research on natural language processing and deep learning

• Analysis of transformer representations

• Topic segmentation and classification

• Machine learning with medical text documents

• Fast-paced research field

�3

Datexis Infrastructure

• 30 machines, wild collection

• Hadoop servers (24 disks, 64 cores, 512 MB RAM)

• In-memory database hardware

• Multi-GPU machines (P100, V100) with NVLink

• Workload

• Hundreds of TB of text data to be preprocessed

• Complex machine learning pipelines
�4

Datexis Software

• As usual: Python, R, TensorFlow, PyTorch, CUDA, …

• Docker everywhere in this field

�5

10 CHAPTER 1 Introducing Kubernetes

you want to isolate. To run greater numbers of isolated processes on the same
machine, containers are a much better choice because of their low overhead. Remem-
ber, each VM runs its own set of system services, while containers don’t, because they
all run in the same OS. That also means that to run a container, nothing needs to be
booted up, as is the case in VMs. A process run in a container starts up immediately.

Apps running in multiple VMs

VM 1

App

A

App

B

Kernel

Virtual CPU

Hypervisor

Physical CPU

Kernel

Physical CPU

VM 2

App

D

Kernel

Virtual CPU

App

C

App

E

VM 3

App

F

Kernel

Virtual CPU

Apps running in isolated containers

Container

A

Container

B

Container

C

Container

D

Container

E

Container

F

App

A

App

B

App

D

App

E

App

F

App

C

Figure 1.5 The difference between
how apps in VMs use the CPU vs. how
they use them in containers

Licensed to Peter Tröger <peter.troeger@beuth-hochschule.de>

Example: Nvidia Docker

�6

Starting Point

• 1 year ago:

• SSH into physical servers, shared NFS

• Pulling (tailored) Docker images for ML

• Calendar - based scheduling of resources

• Issues with library updates / dependencies

• Long-running computations, lack of resiliency

�7

The Plan

• Introduce scheduler for containers
on heterogeneous CPU / GPU
resources

• Reproducible and isolated
deployments

• More automation for batch
processing

• Replace HDFS

• Real-world infrastructures in teaching

• Prepare for growth
�8

Kubernetes

�9

20 CHAPTER 1 Introducing Kubernetes

at that moment. The Kubelet on those nodes then instructs the Container Runtime
(Docker, for example) to pull the required container images and run the containers.

 Examine figure 1.10 to gain a better understanding of how applications are
deployed in Kubernetes. The app descriptor lists four containers, grouped into three
sets (these sets are called pods; we’ll explain what they are in chapter 3). The first two
pods each contain only a single container, whereas the last one contains two. That
means both containers need to run co-located and shouldn’t be isolated from each
other. Next to each pod, you also see a number representing the number of replicas
of each pod that need to run in parallel. After submitting the descriptor to Kuberne-
tes, it will schedule the specified number of replicas of each pod to the available
worker nodes. The Kubelets on the nodes will then tell Docker to pull the container
images from the image registry and run the containers.

KEEPING THE CONTAINERS RUNNING

Once the application is running, Kubernetes continuously makes sure that the deployed
state of the application always matches the description you provided. For example, if

1x

App descriptor

Legend:

Container image Multiple containers

running “together”

(not fully isolated)

5x

2x

Control Plane

(master)

Image registry

Worker nodes

...

kube-proxy

Docker

Kubelet kube-proxy

Docker

Kubelet

Container

...

kube-proxy

Docker

Kubelet kube-proxy

Docker

Kubelet

...

kube-proxy

Docker

Kubelet kube-proxy

Docker

Kubelet

Figure 1.10 A basic overview of the Kubernetes architecture and an application running on top of it

Licensed to Peter Tröger <peter.troeger@beuth-hochschule.de>

https://opensource.com/article/18/4/how-netflix-does-failovers-7-minutes-flat

How hard can it be …

• Many installation support
packages and distributions
available (kubespray, kubeadm,
krib, KOPS, Canonical MaaS, …)

• But:

• Main intention is a scale-out
infrastructure for containers

• GCE / AWS hosting as default

• On premise often a special case

�11

Basic installation

• Chose your favorite distribution

• Pick some container run-time

• Choose your level of installation ‚magic‘

• Follow the usual cluster node rules

• NTP and DNS are critical

• Automate everything

• Configure NVidia Docker for GPU nodes

• …
�12

Users?

• Data science research works  
on tight schedules

• No time for long infrastructure
learning curve

• Solution: Small manual with  
YML example snippets

• StackOverflow does the rest

• Command-Line tool kubectl
and Kubernetes Dashboard GUI

�14

Example: GPU Allocation

�15

Basic installation

• Everything in Kubernetes is extensible and pluggable

• Container overlay network

• Dynamic storage provisioning

• Schedulers, schema for cluster resources

• Quota and eviction handling

• Security policy handing

• After initial cluster setup, the real fun begins …
�17

Example: Container Networking

�18

https://itnext.io/benchmark-results-of-kubernetes-network-plugins-cni-over-10gbit-s-network-updated-april-2019-4a9886efe9c4

Example: CPU Partitioning

�19

First user experiences

• Containers (alone) are supposed to be stateless

• Killing containers is a normal and regular activity

• Initially very irritating

• Things no longer run on „your“ host

• Checkpointing mentality

• ML Docker images are not really ready for that

• Quick demand for custom images
�20

First problems

• /var/lib/docker for the overlay file system

• /var/lib/docker for images being pulled

• Swap is disabled on Kubernetes nodes

• Users where easily able to fill the disk

• Data analysis tasks in containers filling /tmp

• Private Docker images for large data transfer

�21

Volumes

�22

481Understanding the pod’s lifecycle

Container

Process

Writes to Filesystem

Writable layer

Read-only layer

Read-only layer

Image layers

Container crashes
or is killed

Pod

New container

New process

Filesystem

New writable layer

Read-only layer

Read-only layer

Image layers

New container started
(part of the same pod)

New container
starts with new
writeable layer:
all files are lost

Figure 17.2 Files written to the container’s filesystem are lost when the container is restarted.

Container

Process

Writes to
Can read

the same filesFilesystem

volumeMount

Container crashes
or is killed

Pod

New container

New process

Filesystem

volumeMount

New container started
(part of the same pod)

New process can
use data preserved
in the volume

Volume

Figure 17.3 Using a volume to persist data across container restarts

Licensed to Peter Tröger <peter.troeger@beuth-hochschule.de>

Dynamic Volume Provisioning

• Users describe demand for storage  
(persistent volume claim)

• Kubernetes forwards request to provisioner

• Some storage technology + API + Kubernetes integration

• Examples: GCE disk, AWS EBS device, Azure disk, Fibre
Channel, NFS mount, iSCSI mount, VSphere volume,
Portworx, ScaleIO, …

• Provisioner creates a mountable persistent volume

�23

Example: Datexis storage

• 120 disks over 7 nodes, 200TB raw storage

• GlusterFS

• First attempt, looked manageable

• Broken support for relational databases in volumes

• Current attempt: Rook

• Ceph deployment as containers

• Scaling becomes easier, network filesystem included
�24

More problems

• Special provisioner for local persistent volumes

• Real physical disk for caching latency-critical data

• One user stored 12 million input files on the disk

• Locate daemon was still running on the physical node

• Everything inside Kubernetes uses TLS

• Certificate roll-over does not happen automatically

• Killing the cluster with one line: 
kubectl -n foo delete pods, ns -all

�25

Different mindset

�26

The missing landing page

• Kubernetes in-built authentication is for software,  
not for humans (bearer tokens, X.509 certificates, OIDC)

• On-boarding of users is your problem

• Project „Dex“: Extension of auth options, but still no frontend

• Project „K8S Dashboard“: No single sign-on

• Nice user frontends seem to be only available as part of  
commercial products

• So we built something for ourselves …
�27

https://github.com/troeger/kubeportal

Status

• Shared GPU usage with
Kubernetes works smoothly

• Several benefits (batch
processing, improved
storage, single sign-on)
already taken for granted

• Still fighting with low-level
management of resources
(images, YML, mounts)

• What they really want is
Jupyter notebooks …

�32

https://blog.dominodatalab.com/interactive-
dashboards-in-jupyter/

JupyterHub

�33https://zero-to-jupyterhub.readthedocs.io/en/latest/architecture.html

Conclusion

• Kubernetes as container orchestration engine

• Fits perfectly to Docker-based software packaging

• Endless flexibility, hard choices for admins

• Vibrant community

• Great possibilities for knowledge transfer from the grid world 
(portal technology, federated user authentication, scalable storage,
job pipelines, resource partitioning, resource accounting, security, …)

• The story continues.

�34

