Random number generation
for parallel Monte Carlo

Protocol of a temporary obsession

Jakob van Santen <jakob.van.santen@desy.de>
In a place, at a time
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Motivating example

» Factoring CORSIKA out into a
service allows flexible scaling

 Problem: CORSIKA's RNG is
explicit internal state => result
depends on which server handles
the request.

 Solution: client maintains and
communicates desired RNG state

 How to communicate and apply
state without sacrificing quality or
efficiency?

a) Brute force, or

b) clever math
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Requirements for parallel random numbers

* Asingle pseudorandom sequence should have:
« deterministic output
« an extremely long period (2128 or more)
* no autocorrelation
« Parallel pseudorandom sequences (streams) should be:
1. Disjoint and uncorrelated (provably, if possible)
2. Quickly partitionable into arbitrarily sized substreams
3. Independent of the degree of parallelization
4.Small (<< than 20kB state of MT19937)

5. Fast (random numbers should be cheaper than the calculation they feed)
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Partitioning strategies

1. Use a single generator with different initial state (seed) for each stream and
hope for the best

* Disjoint and uncorrelated:
- Paritionable: no
» Independent of parallelization: no
2. Use the same seed, but different parameter sets

* Disjoint and uncorrelated: yes

 Partitionable: (partitioning strategy has to be fixed at the outset)

 Independent of parallelization: (given a sufficiently large number of
parameter sets)
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Parameterized RNGs: SPRNG

sprng.org

« GPL V2 license

 C++/FORTRAN bindings (custom interface), 3rd-party CUDA implementation exists
» Creates independent “streams” of random numbers

* Independence of streams theoretically proven (for some generators)

« Default generator (lagged Fibonacci) has 23948 independent streams, each with
period 21310

« Streams partitioned in a tree with fixed but user-specified arity. Example: with 64
streams, each root generator can spawn 64 substreams, each substream can
spawn 64 substreams of its own, etc.

« Pitfalls:
* Itis possible to exhaust the parameter space if you try hard enough.
* Initializing a full-period RNG is expensive (O(ms), equivalent to ~2e5

random numbers).
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http://sprng.org

Bad example: Multiply-with-carry RNG
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atomic.physics.lu.se

Lag-1 MWC generator with period ~269, different prime multipliers lead to
independent streams

Good:

« Very fast (3 floating-point operations per call)

* Very small (8-byte state fits comfortably in GPU local memory)
Bad:

* Number of independent streams limited to number of prime multipliers
generated prior to run (not arbitrarily partitionable)

 RNG is attached to a thread rather than work item, so result depends on
(nondeterministic) mapping of work items to threads (result depends on
parallelization)


http://www.atomic.physics.lu.se/fileadmin/atomfysik/Biophotonics/Software/CUDAMCML.pdf

Partitioning strategies (continued)

Leapfrog

Disjoint: yes
Uncorrelated: maybe
Independent of parallelization: no

Quickly partitionable: maybe
(requires efficient fast-forward by N)

Block split
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Disjoint and uncorrelated: yes
Independent of parallelization: yes

Quickly partitionable: maybe
(requires efficient fast-forward by
block size)
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Fast-forwarding a random number generator

RNGs produce a recurrent sequence, i.e. the next state depends on the previous N

r;, = f(?“i_l, Ts—24..., Ti—n) y

Fast-forwarding through M positions by applying f() M times. If f is a linear
function, this can be written as an M iterations of the matrix multiplication
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and can be computed in O(n3logM) time rather than O(n3M). Since all finite or
periodic sequences over a finite field can be generated by a linear recurrence, this
is always possible in principle, but only practical for explicitly linear RNGs
(linear congruential, general linear feedback shift registers, YARNS).

[Mertens (2009)]
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Block-splitting/leapfrogging RNGs: TRNG

numbercrunch.de/trng

« 3-clause BSD license

« Passes full suite of empirical tests in TestU01

« C++11 random_number_engine and CUDA bindings
« Some engines with efficient split and skip operations

« Partitioning left to the user
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https://www.numbercrunch.de/trng/

Counter-based RNGs
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An RNG is built out of two functions:

f: S — § (state transition function)

g . S—->U (output function)

Conventional RNGs have a complicated f() that produces integers over some
range, and a simple g() that scales those integers to [0,1).

Counter-based RNGs make f() simple (a counter!) and a g() that

« Maps arbitrarily sequences of integers onto another set whose distribution
is indistinguishable from noise

 |s reasonable fast to evaluate

« =>(() has the same properties as a good cryptographic block cypher!

[Salmon et al (2011)]
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Counter-based RNGs: Random123

deshawresearch.com

« 3-clause BSD license

« Passes full suite of empirical tests in TestU01

« C, C++11 random_number_engine, CUDA bindings

« Faster than MT19937 on CPUs with AES-NI support

« 264 possible streams, each with 2128 period

« Skip and split operations naturally supported, and practically free

« Partitioning left to the user
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http://www.deshawresearch.com/downloads/download_random123.cgi/

Summary
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Massively parallel random number generation is a common problem, and there are
known solutions.

In all cases, random number generation should be deterministic and independent of
granularity of parallelism, execution order, etc.

« Attach RNG stream/block to particle (or whatever other atomic unit you have in
your simulation)

« Ensure that the conditions for creating a new stream/block are deterministic
The implementation depends on the characteristics of the simulation

* For explicit parallelism with rare, predictable branching and no restrictions on
local memory: use SPRNG streams

» For implicit (dynamically load-balanced) parallelism, or with unpredictable
workloads, assign a (dynamically sized) block to each work item

 TRNG: fast-forward blocks in logarithmic time

« Random123: fast-forward blocks in constant time
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