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Improving Precipitation Estimates from Commercial Microwave Links 

Using Deep Learning: A Comparative Study on OpenMRG Data

Introduction

Opportunistic Sensing is a widely 

acknowledged method capable of providing 

reliable operational precipitation observations 

and facilitate their use in precipitation 

nowcasting and operational hydrological 

forecasts.

Compared to conventional methods, 

Commercial Microwave Links (CMLs) offer 

great spatial and temporal resolution, making 

them a viable opportunistic sensing 

technology for precipitation assessment. 

However, noise, ambiguity, and non-linear 

connections between signal attenuation and 

rainfall intensity make it difficult to reliably 

estimate precipitation using CML-derived 

attenuation data.

Our Work

Materials

From the netCDF format of CML Data, we get 

the RSL (Received Signal Level) and TSL 

(Transmitted Signal Level). We get the link 

characteristics like frequency, length, 

polarization, etc. from the metadata.

To estimate the effect of precipitation we 

calculate the attenuation by the difference 

between the TSL and RSL, similar method 

has been used by Ostrometzky & Eshel et al. 

where they determined the attenuation in 

each 15-min period as the difference between 

maximum TSL value and the minimum RSL 

value in that period. We use the given RSL 

and TSL of our dataset instead of the 

maximum and minimum.

Methods

In order to compare our proposed model, we 

have used 6 other models, all of which had 

simple architectures:

• Random Forest Regressor

• LSTM (Long Short-Term Memory) 

• XGBoost

• Support Vector Regression (SVR) 

• k-Nearest Neighbors (k-NN)

• Elastic Net

Our proposed models:

• Stacking (Decision Tree + SVR)*

• Quantum Machine Learning (QML)*

Ensemble Learning (Stacking)

Stacking works by training several different 

base models — in our case, a Decision Tree 

Regressor and a Support Vector Regressor. 

Once they’ve learned their individual patterns, 

their predictions are used as new input 

features for a second-level model, known as 

the meta-learner. For this, we used a simple 

Linear Regression model. The meta-model 

learns to combine the strengths of the base 

models by finding the best way to weight their 

predictions.

Proposed QML Model

We designed a parameterized quantum 

circuit. This circuit uses three qubits—one for 

each input feature—and applies angle 

encoding using RY gates. The classical input 

data is encoded as rotation angles, which 

effectively maps each input vector into a 

quantum state. The heart of the model is a 

layered quantum circuit. We applied seven 

layers of parameterized RY gates followed by 

CNOT gates to introduce entanglement.

Proposed QML Model

We built a quantum machine learning model 

using PennyLane. The goal was to predict 

signal attenuation based on three input 

features: frequency, length, and polarization. 

We used a hybrid approach, combining 

classical preprocessing with a quantum circuit.

Conclusion

To monitor and analyze the training 

performance of the quantum machine 

learning model using a cost function (Mean 

Squared Error).

Training Details:

Optimizer: Gradient Descent

Steps: 100 iterations

Cost Function: Mean Squared Error (MSE)

Framework: PennyLane

 

In order to promote the use of CMLs for real 

time, high-resolution precipitation monitoring, 

this work attempts to close the gap between 

data collection and useful insights. We 

showcase the efficiency of ensemble learning 

and Quantum Machine Learning approaches 

for processing CML data, this work adds to 

the expanding corpus of research on 

opportunistic sensing.

In this work, we use the OpenMRG dataset, 

which contains metadata like frequency, link 

length, and polarization combined with CML-

derived signal attenuation data, to investigate 

the potential of deep learning (DL) techniques 

to enhance precipitation estimations. 

This analysis shows that both classical and 

quantum approaches can effectively model 

microwave link attenuation, with quantum 

methods showing particular promise.

Comparative Study
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Fig 1. Partial Dataset

Fig 2. Ensemble Learning – Stacking architecture

Fig 3. QML Circuit Design

Fig 4. Circuit Structure with gate values

Fig 6. Comparison of Model performances
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