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Motivation |

Manual network

e Accuracy of real-time precipitation monitoring limited by low number of rain gauges
e Merging radar with both official and crowdsourced rain gauges has the largest potential to
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Improve quantitative precipitation estimates (QPES)
e Need to account for different quality of rain gauge observations through:
— PWS quality control - filter out observation errors
— PWS quality weighting - not to overwhelm official (high-quality) observations

Methodology

e Forthe period February 2023 - January 2024 in the Netherlands (Fig. 1): |
— 32 KNMl automatic weather stations (AWSSs)
— 4281 Netatmo personal weather stations (PWSs)

— 319 manual network gauges (only 24-h accumulations, used for evaluation)

e Using operational KNMI merging algorithm (see poster presentation by Aart Overeem, |ID: 9)

e Compare to current real-time (AWS-radar) and final reanalysis (RFCOR) products Figure 1: Locations of available A) radars and KNMI rain gauges B) Netatmo PWSs.
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Only a simple PWS quality control needed / NP // Uradiusied / Quality weight of PWSs should be decreased

e Simple PWS-radar thresholds PWSQC C e Optimal PWS weight around 0.1 (one tenth of the weight of AWSSs)
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Evaluation
Adding PWSs improves QPEs, especially during heavy rainfall Improvement also at lower PWS network densities
e PWSs help capture local convective storms ¢ Diminishing benefit of adding extra PWSs
e | argest improvement at locations far from AWSs
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Figure 3: Scatter density plots of 1-h precipitation accumulations of the A) AWS-radar and B) PWS-AWS-radar Figure 4: Performance of the merged radar products as a function of the number of used PWSs
merged products against the AWS reference provided through leave-one-out cross validation for 24-h accumulations at manual gauges (with leave-one-out cross validation for RFCOR).
Conclusions
Full work available at: R f
e Merged PWS-AWS-radar product can match the performance of the ererences
final reanalysis product in real time .,-.d- % de Vos et al. (2019). Quality control for crowdsourced personal weather stations to enable
. . . . . o ti"."l 2 . operational rainfall monitoring. Geophysical Research Letters, 46(15), 8820-8829.
* Methodology is potentially suitable for operational rainfall monitoring rx '#L ~ Overeem et al. (2024). Merging with crowdsourced rain gauge data improves pan-European
in the Netherlands as well as countries with less dense PWS networks ES; . radar precipitation estimates. Hydrology and Earth System Sciences, 28(3), 649-668.

https://edepot.wur.nl/693405



	Slide 1

