International Conference on Opportunistic Sensing of Precipitation German Weather Service, Offenbach, Germany

Optimizing Wet Antenna Attenuation Models for Improved Rainfall Estimation Using Commercial Microwave Links

Smit Chetan Doshi¹, Carlo De Michele², Roberto Nebuloni³

1-Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany

2- Politecnico di Milano, Milan, Italy

3- CNR-IEIIT, Milan, Italy

- VFBm reduced bias 90% by and **normalized RMSE by 70%** compared to uncorrected CML rainfall data.

Table: Overview of WAA models

R - rainfall intensity

iii

WAA confirms to be dependent on rainfall intensity.

RESEARCH QUESTION 2

- Does the calibration of the VFBm model influences the accuracy of rainfall estimates in higher and lower frequency bands?
- > How do different WAA models impact accuracy of hourly rainfall the accumulation estimates from CMLs compared to RG?

METHODOLOGY 3

No. Aq	Model	Analytical expression	Parameters	Links and antennas
	Schleiss, Rieckermann and Berne	$A_{w,i} = \begin{cases} \min \begin{pmatrix} A_i, W, W_{i-1} + \\ (W - W_{i-1}) \frac{3T}{\tau_w} \end{pmatrix}, \\ if \ i \ wet \\ \min(A_i, W), if \ i \ dry \end{cases}$	τw=15 min, W=2.3 dB (38 GHz)	1.85 km link; 30 cm antennas
	Valtr, Fencl and Bareš (VFB)	$A_w = k' R^{\alpha'}$	<i>k</i> ′=0.68, <i>α</i> ′=0.34 (32 GHz)	820 m and 611 mlinks;30 cm antennas witha radome
	Valtr, Fencl and Bareš modified (VFBm)	$A_w = k' R^{\alpha'}$	$k'=0.28, \alpha'=0.52 (17.7-23.1 \text{ GHz})$ $k'=0.68 \alpha'=0.52 (37.2-42.6 \text{ GHz})$	Calibration over 24 links in two different bandwidths

Rainfall estimation performance

WAA model parameter optimization Data Processing Data Acquisition

Fig: Hourly rainfall accumulation: CML vs RG estimates (RB – Relative Bias).A) All 87 CMLs, B–C) Frequency bands 17.7–23.1 & 37.2–42.6 GHz, D) Weak rain (0.2–2.5 mm), E) Heavy rain (>2.5 mm).

CONCLUSIONS 6

- > WAA impact is frequency-dependent, stronger in the 37–43 GHz band than in 17– 23 GHz.
- > VFBm improves accuracy of rainfall estimates, reducing Relative Bias (RB) compared to the original VFB model.
- > Performance shows a dependence on distance to RG, and misclassification of weak rain event due to quantization.