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1. Introduction

* Signal changes in CMLs due to weather are often
misclassified as faults.

* [t’s Hard to distinguish between meteorological effects and
real malfunctions (e.g., hardware issues).

* This Leads to unnecessary maintenance and missed
environmental insights.

* We investigate a method to detect and classify faults in
CMLs, and relate them to weather events

2. Data

~650 Commercial Microwave Links (CMLs) from:
St. Martin, French Guiana, Martinique, Guadeloupe

* 15-min TX/RX power readings
e Up to 1.5 years of data per link
* Includes metadata: frequency, path length, location

3. Validation

* Rain data from NOAA matched to CML regions

* Only moderate+ rain events (>10 mm/day) included

* Rain events temporally alighed with detected anomalies

* Used to validate correspondence between signal
disruptions and precipitation

4. Methodology

We developed an unsupervised pipeline consisting of:
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Physical and Signal Features

 Domain-Based Features: Help identify whether a fault is
regional (e.g., weather-related).

* Signal Characteristics: Describe signal structure and dynamics.
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Figure 1: Study regions and link distributions across French Guiana, St. Martin, Martinique, and Guadeloupe, with marked weather
station locations.

5. Results & Conclusions

Fault segments were detected using ML tools trained on unlabeled
data. Start/end points were identified using learned reconstruction
thresholds.
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Figure 2: Example of detected fault segments using autoencoder reconstruction error.

Cluster Visualization

Percentage of Rain-Dominant Faults per Cluster

rcentage of Faults Labeled as Rain

P
I
Q
X

0 - =i \’.. — oI
@ ¥
)
=

& 1 "
3
=J0Ki mvi %
5
g
—60 - 2
—1I00 —175 —EIBO —125 6 2I5 510 7I5 160
A K=6 | Silhouette Score: 0.3

Figure 3: Visualization of clustered fault segments.
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Figure 4: Rainfall overlap fraction across fault clusters.

@Blue g © Orange: Localized/technical faults
@ Red & @ Brown: Likely regional, weather-driven faults
O Purple: Mixed—strong domain features, unclear rain match

G Green: Neutral or borderline behavior

Our approach enables automated, interpretable fault
classification in CMLs, supporting both infrastructure
diagnostics and weather sensing.
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