

Insertion Device for CERN at the KArlsruhe Research Accelerator

Julian Gethmann | 27.2.2019

Instute for Beam Physics and Technology, IBP1

www.kit.edu

KIT - The Research University in the Helmholtz Association

Content

- Introduction IBPT
- Basics of accelerator physics
- Damping wiggler
- Experiments for CERN and KIT

Introduction – IBPT

- Institute for Beam Physics and Technology (founded 2016)
- Operating accelerator facilities at Campus North
- Operating magnet lab and doing simulations at Campus South
- KArlsruhe Research Accelerator (KARA)
 - 0.5 to 2.5 GeV electron storage ring
 - Accelerator test facility and synchrotron radiation source
- Ferninfrarot Linac- und Test-Experiment (FLUTE)
 - 40 to 50 MeV ultra short pulse facility
 - Pico- and femtosecond electron and photon beam studies

Basics – Acceleration of Particles

- Lorentz force: $\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$
 - *F*[°]: force
 - *q*: charge
 - \vec{E} : electric field
 - *B*: magnetic field
 - \vec{v} : velocity
- Transverse deflection
 - Using magnetic fields
- Longitudinal acceleration
 - Using electric fields
 - Microwaves
 - Radio frequency in cavities: 100 MHz to 3000 MHz
 - House hold microwave oven: 2450 MHz

[Tokamac [CC BY-SA 4.0], from Wikimedia Commons]

Basics – Longitudinal Motion

- Low energy particles: more acceleration
- High energy particles: less acceleration
- RF wave leads to bunching
- Self-focusing effect ("phase focusing")
 ⇒ longitudinal/synchrotron oscillation

Basics – Deflection of Particles

Transverse deflection by magnets

Dipole for bending the beam

Quadrupole for focusing

 Higher order poles for correction of higher order effects

Basics – Deflection of Particles

Transverse deflection by magnets

Dipole for bending the beam

Quadrupole for focusing

 Higher order poles for correction of higher order effects

Basics – Transverse Motion

- Quadrupoles focus in one plane, defocus in the other plane
- Alternating gradient quadrupoles lead to overall focusing
 - So-called "strong focusing", similar to optical lenses
- Transverse single particle motion: Oscillation with envelope β -function and emittance ε : $\sigma = \sqrt{\beta(s)\varepsilon}$

- Number of oscillations per revolution: Tune *Q*
- Characteristic parameter of beam motion
- Stay away from resonances (see picture, here Q = 8))

Basics – Chromaticity

- Chromaticity $Q' = \frac{dQ}{dp}$
- Momentum dependent tune
- Negative for quadrupoles only optics
- Similar to chromatic aberation (optics/photography)
- Sextupoles for compensation
- Keep slightly above zero

[Helmut Wiedemann, Particle Accelerator Physics, Springer, 2007] Chromaticity

creation and mittigation

Basics – Accelerator Components

KArlsruhe Research Accelerator

KARA compared to LHC

Parameter	KARA	LHC
Use case	Synchrotron Radiation	Collider
Circumference	110.40 m	26.66 km
Beam(s)	1 electron beam	2 proton/ion beams
Energy	0.5 GeV to 2.5 GeV	450 GeV to 7000 GeV
Tunes (H/V)	6.77 / 2.81	64.31 / 59.32
Radiation Power $P \propto E^4/\rho^2$	$\sim 93\mathrm{kW}$	$\sim 2 \cdot 6 \text{kW}$

[https://www.lhc-closer.es/taking_a_closer_look_at_lhc/0.lhc_parameters]

- Experiments at KARA for EuroCirCol (FCC)
- Experiments at KARA for CLIC

Compact Linear Collider damping rings

- Many (e.g. 52) wiggler per damping ring
- $\begin{array}{l} \mathsf{Emittance shrinks} \\ (\varepsilon_{\mathrm{x},\mathrm{y}} = \sigma_{\mathrm{x},\mathrm{y}}^2 / \beta_{\mathrm{x},\mathrm{y}}) \\ \rightarrow \mathsf{Luminosity increases} \\ \left(\mathcal{L} = \frac{N_1 N_2}{4\pi\sigma_{\mathrm{x}}\sigma_{\mathrm{y}} B} f_{\mathrm{rev}} \right) \end{array}$
 - Crucial for linear accelerators like the ILC or CLIC
- Strong wigglers

Light source for hard x-ray light

[M. Aicheler et al. (eds.): A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report. Technical report, CERN (2012)] CLIC facility with damping ring

Wiggler

[Axel Bernhard, Beschleunigerphysik II, WS 12/13]

- Many strong additional dipoles
- Local deflection only
- Electrons wiggle in the alternating field
- Radiate strongly in short space
- Radiate in forward direction with opening angle $pprox 1/\gamma$

Radiation damping

Radiation damping

Transeverse momentum loss called damping

CLIC damping wiggler – technical details

[Courtesy: Richard Kubat] CLIC damping wiggler installation into KARA

 Strong damping and high x-ray flux

Parameter	Unit	Value
Magnetic length $L_{ m w}$	mm	1836
Period length $\lambda_{ m w}$	mm	51.4
Superconductor	NbTi	
Magnetic field B_{\max}	Т	2.9

KARA	Radiation power
without wiggler	75 kW
with CLICdw	89 kW
with all "wigglers"	93 kW

Experiments for CERN – Beam dynamics

- Heat load of the synchrotron radiation is not an issue
- Vertical tune does behave as expected
- Horizontal tune shows non-linear features

Testing a new chromaticity measurement technique

18 Zisoppulosolst ARIES Annual Meeting 2018 Wiggler field dependent chromaticity

Instute for Beam Physics and Technology,

[Panagiotis

IBPT

Experiments for KARA – THz

Summary

Accelerator Physics

- Electron beams oscillate in all planes
- Insertion devices radiate bright synchrotron light
- Strong wiggler can increase the luminosity

CLIC damping wiggler at KARA

- Works as a light source for KIT
- Scaled to linear collider's needs
- Test beam dynamics detection schemes for CERN
- Influence parameters for CSR THz bursting effects