

Cosmic Ray Science on the International Space Station (ISS)

KSETA Workshop 2014 – Freudenstadt, 21.-23.07.2014

Stefanie Falk* and Stefan Zeissler[†] | [†] Institut für Experimentelle Kernphysik (EKP), * Institut für Kernphysik (IKP)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- (1) Science
 - Cosmic particles spectrum
 - Measurement methods
 - Scientific Goals of AMS-02 vs. JEM-EUSO
- (2) The Instruments
 - AMS-02
 - JEM-EUSO
 - Science on the International Space Station (ISS)
- (3) Measurement Methods
 - Particle Fluxes
 - Lepton Flux with AMS-02
 - Measurement with JEM-EUSO
- (4) First Results and Outlook
- (5) Summary and Keywords

Cosmic Particles Spectra

Cosmic Ray Spectrum

Measurement Methods I Direct Detection

Low energy regime:

- ✓ Rather high flux
- Particles get absorbed in the atmosphere

CREAM VI

DK-1 with PAMELA

Bring **particle detectors** to the top of the atmosphere or to space: • Balloons

- Satellites
- Space Station

AMS-02 on ISS

Measurement Methodes II Extensive Air Shower (EAS)

Light Emission

Goals of...

AMS-02

- Cosmic rays composition and fluxes
 - Propagation models
 - Origin of cosmic rays
 - Search for dark matter
- Low energy particles
 - exposure to manned space flights
- Anti matter
- Exotic matter (Strangeletts)

"The most exciting objective of AMS is to probe the unknown; to search for phenomena which exist in nature that we have not yet imagined nor had the tools to discover"

JEM-EUSO

- Detection of EECR particles (E > 5 · 10¹⁹ eV)
 - Source identification
 - Reason for flux suppression
 - Recovery of the spectrum
- Explorative potential
 - Multi messenger
 - UHE gamma rays
 - UHE neutrinos
 - Galactic magnetic fields
 - Relativity and quantum gravity
 - Atmospheric science
 - Nightglow
 - Lightning, Plasma discharges
 - Meteors, meteoroids

Outline

(1) Science

- Cosmic particles spectrum
- Measurement methods
- Goals of AMS-02 vs. JEM-EUSO
- (2) The Instruments
 - AMS-02
 - JEM-EUSO
 - Science on the International Space Station (ISS)
- (3) Measurement Methods
 - Particle Fluxes
 - Lepton Flux with AMS-02
 - Measurement with JEM-EUSO
- (4) First Results and Outlook
- (5) Summary and Keywords

The AMS-02 Detector

The AMS-02 Detector

- Tracking
 - Charge by dE/dx
 - Gamma factor
 → Lepton Identification
 - Relative velocity
 - Charge by dE/dx
 - Trigger and veto counter
- Tracker: Particle trajectory
 - Charge by dE/dx
 - Rigidity \rightarrow Charge sign
- RICH: Relative velocity
 - Mass
 - .: Energy of Leptons
 - 3D shower reconstruction
 → Lepton identification

JEM-EUSO

Nadir mode

Tilt mode

26 mm 55 mm Elementary Cell - EC & UV-Filter 2x2 MAPMTs = 256 Pixels Multi-Anode Photomultiplier Tube - MAPMT 8x8 Pixels 2.3 m 167 mm 1.9 m Focal Surface Detector Photodetector Module - PDM 137 PDMs = 0.3 M Pixels 3x3 ECs = 2,304 Pixels Andrea Santangelo Kepler Center-Tübingen

Science on the ISS

Why do astroparticle physics on the International Space Station (ISS)?

ISS Provides:

- Power
- Data up- and down-link
- High mass possible
- Long term measurement (at least till 2020)
- Maneuvering

 \rightarrow Focus on the detector, not space flight!

Data Flow

AMS Laptop at ISS

TDRS Satellites

White Sands Stations

AMS POCC at CERN

$MSC \rightarrow JSC$

Detector Monitoring

Detector is monitored in 5 shift positions 24/7 at the Payload Operation Control Center **(POCC)** at CERN and a backup POCC in Taiwan:

- Temperatures
- Data stream/acquisition
- Data quality
- Detector status

Outline

(1) Science

- Cosmic particles spectrum
- Measurement methods
- Goals of AMS-02 vs. JEM-EUSO
- (2) The Instruments
 - AMS-02
 - JEM-EUSO
 - Science on the International Space Station (ISS)
- (3) Measurement Methods
 - Particle Fluxes
 - Lepton Flux with AMS-02
 - Measurement with JEM-EUSO
- (4) First Results and Outlook
- (5) Summary and Keywords

Karlsruhe Institute of Technology

Particle Fluxes

Describes the number of particles with certain energy per measurement area, time and incoming angle independent from detector.

$$\Phi(E) = \frac{N(E)}{Acc(E)\varepsilon_{Trig}\varepsilon_{Sel}T_{exp}\Delta E}$$

Ingredients for the flux:

N: Number of particles found Acc: Acceptance $[m^2 sr]$ is the effective detection area $\mathcal{E}_Trig:$ Efficiency of Trigger $\mathcal{E}_Sel:$ Efficiency in event selection $T_exp:$ Exposure Time [s] $\Delta E:$ Energy bin width [eV]

AMS-02 Electron Flux Particle identification

1.) Cut on ECAL estimator to reduce proton background

2.) Total number of electrons is obtained by a fit using TRD estimator

AMS-02 Electron Flux Acceptance

Geometric:

Simulation:

Shot MC electrons from plane A within incoming angle α .

$$Acc = A \times \alpha$$

Not easy for more complicated geometries
Does not include inefficiencies

$$Acc = A \times \alpha \times \frac{N_{Triggered}}{N_{Generated}}$$

AMS-02 Electron Flux Exposure Time

Earth magnetic field bends low energy particles trajectory.

Geomagnetic cutoff leads to energy dependance in exposure time.

0

50

150

Longitude [°]

100

-50

Latitude [°]

80

60 40

20

0 -20

-40 -60

-80

-150

-100

JEM-EUSO Measurements

JEM-EUSO Measurements

Detection of

- Direct fluorescence light
- Scattered light
- Ground reflected light
- Detection influenced by
- Transmission in atmosphere
- Optics transmission
- Quantum efficiency of MAPMT

JEM-EUSO Aperture and Exposure

Key effects

- a) EAS development in the atmosphere
- b) Detector properties (FOV, orbit, etc.)
 - $\rightarrow \eta_0 = 20\%$
- c) Steady background light (nightglow, moonlight, etc.)
 - \rightarrow 500 photons/(m² sr ns)
- d) Atmospheric transmittance (especially clouds)

$$\rightarrow \kappa_{\rm C} = 72\%$$

e) Variant background light (anthropogenic light, lightning, etc.)

$$\rightarrow f_{\rm loc} = 10\%$$

JEM-EUSO Aperture and Exposure

Geometrical aperture

$$A(E) = \frac{N_{\text{trig}}}{N_{\text{inject}}} \cdot S_{\text{inject}} \cdot \Omega_0$$

Annual Exposure

$$\coloneqq A(E) \cdot \kappa_{\mathsf{C}} \cdot \eta_{0} \cdot (1 - f_{\mathrm{loc}}) \cdot (1[\mathrm{yr}])$$
0.13

Overall Exposure

$$\propto \int_0^{I^{\rm thr}} A\left(\sqrt{\frac{\langle I_{\rm BG}\rangle}{I_{\rm BG}}} \cdot E\right) \cdot p(I_{\rm BG}) \, \mathrm{d}I_{\rm BG}$$

 \rightarrow Exposure 9 x 7000 km² yr sr

JEM-EUSO Calibration

Main issues

- a) Atmospheric conditions \rightarrow IR camera, LIDAR + GDAS data
- b) Background light levels \rightarrow Slow acquisition mode
- c) Timing uncertainties
- d) Tilt angle
- e) Pointing errors ($H_{ISS}(t)$) \rightarrow Altitude monitoring
- f) Temperature variation
- g) Age of the instrument
- \Rightarrow Global Light System (GLS)
 - World wide network of ground-based stations
 - Airborne stations
 - Xenon flasher lamps
 - Steerable laser

Outline

(1) Science

- Cosmic particles spectrum
- Measurement methods
- Goals of AMS-02 vs. JEM-EUSO
- (2) The Instruments
 - AMS-02
 - JEM-EUSO
 - Science on the International Space Station (ISS)
- (3) Measurement Methods
 - Particle Fluxes
 - Flux with AMS-02
 - Measurement with JEM-EUSO
- (4) First Results and Outlook
- (5) Summary and Keywords

First Results of AMS-02

JEM-EUSO Prototypes

EUSO-TA

- Telescope Area, Utah (USA)
- Calibration using CLF and ELS
- Cross calibration with TA
- External trigger for EAS

 \Rightarrow First data expected end of July

EUSO-Balloon

- Scheduled for CNES balloon flight in Timmins, Ontario (Canada) in August
- Background measurement
- Near space environment

ISS-CREAM

 Direct measurement of cosmic rays with energies up to 100 TeV onboard ISS (former balloon experiment).

Start Planed in Dec 2014 with SpaceX-6 flight.

Summary

 $\Phi(E) = \frac{N(E)}{Acc(E)\varepsilon_{Trig}\varepsilon_{Sel}T_{ovp}\Delta E}$

- The **flux** disentangles the measurement from the detector
- The International Space Station (ISS) is a perfect host for cosmic ray experiments
- **AMS-02** is measuring cosmic particles on the ISS since May 2011 without mayor interuptions
- JEM-EUSO will use the air fluorescence method for the first time in a space environment and measure the cosmic ray particle flux to energies beyond 10^20 eV

Thank you for your attention!

Goals of Astroparticle Physics

Use methods of particle physics to study astrophysical problems

- What does our universe look like (structure formation)?
- What is happening in our universe (origin of cosmic rays)?
- What did the early universe look like (Big Bang)?
- Where does Matter come from or where did the anti-matter go?
- What is Dark Matter?
- What is Dark Energy?

NASA/WMAP Science Team

"Never in the history of science we were so aware of our ignorance: We know that we do not know anything about what makes 95% of our universe"

R.Battiston

JEM-EUSO Specification

• Optics

 Aperture 	4.5 m²
 Band width (UV) 	300 – 430 nm
 Field of view 	0.85 sr (± 30°)
 Observation area 	1.4 x 10 ⁵ km²
FS detector and electronics	
 Sampling time 	2.5 µs
 Spatial angular resolution 	0.074°
 Pixel size at ground 	0.51 km
 Number of pixels 	3.2 x 10⁵

Atmospheric Monitoring

•IR camera

•LIDAR

Calibration system

- •Global Light System (GLS)
- In flight