Introduction to Boosted Decision Trees

A multivariate approach to classification problems

Christian Böser, Simon Fink, Steffen Röcker Institut für Experimentelle Kernphysik, KIT

Overview

• Introduction

• Decision trees

- Learning, Gini Index
- Random Forests
- Boosting
- ROC curve, Overtraining, Examples, ...
- Demonstration of Boosted Decision Trees in TMVA

All tools are freely available, see

ROOT+TMVA: root.cern.ch, tmva.sf.net

Used macros: <u>http://goo.gl/UY4QSa</u>

Introduction

- An often faced problem is to **predict the answer** to a question based on different input variables .
- Two different problems:
 - Classification 0
 - Predict only a binary response •
 - Do I need an umbrella today? ----> Yes/No
 - What is the measured data? Signal/Background
 - Regression Ο
 - Predict an exact value as an answer
 - What will be the temperature tomorrow? -19 °C, 7 °C, 38 °C, ... •
- This session will only cover the **classification** problem

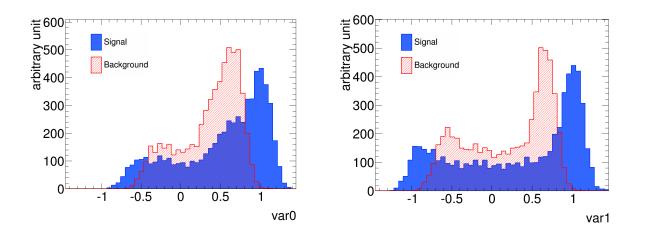
Why Multivariate?

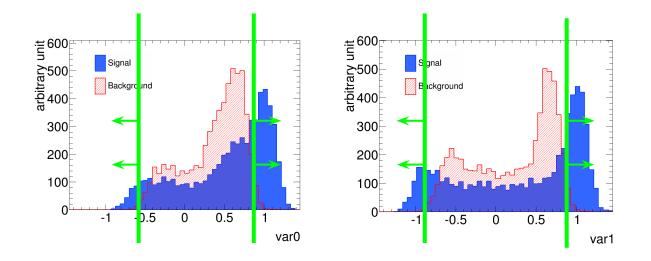
- Allows to combine several discriminating variables into one final discriminator R^d → R
- Better separation than one variable alone
- Correlations become visible

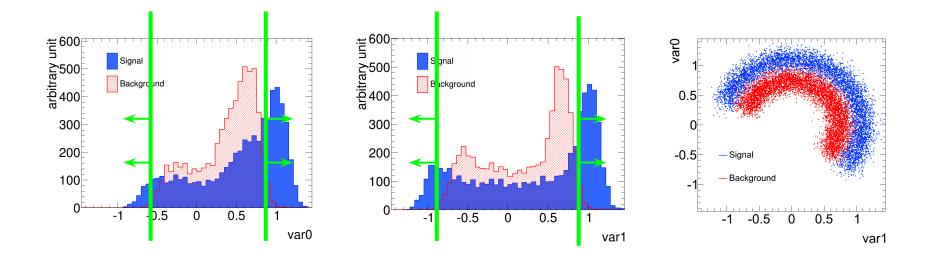
Available methods:

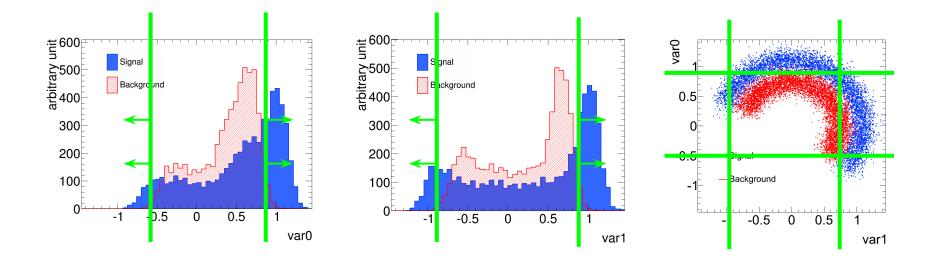
- Boosted Decision Trees
- Neural Networks
- Likelihood Functions

<text><text><section-header><section-header>

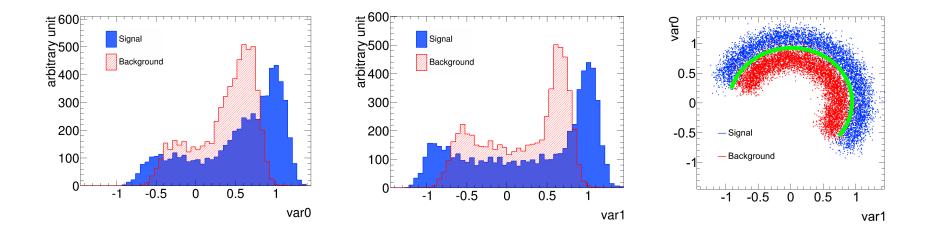








- Why use a multivariate analysis? Why not simply cut on variables?
 - Correlations not visible
 - The more dimensions, the better the possible separation power



Decision Tree

- What exactly is a Decision Tree?
 - Consecutive set of questions (nodes)
 - Only two possible answers per question
 - Each question depends on the formerly given answers
 - Final verdict (leaf) is reached after a given maximum number of nodes

Root

node

xi > c1

S

xj < c2

В

xi < c1

|xk > c4| |xk < c4|

В

xj > c3

S

xj < c3

S

- Advantages of Decision Trees
 - Easy to understand/interpret
 - Good with multivariate data
 - Fast training
- Disadvantages
 - Single tree not very strong -> Random Forests

Decision Tree Learning

- But how to create a DT?
 - A DT needs to be *trained* on a dataset which already provides the outcome (e.g Simulation dataset with signal and background processes)
 - Choice of node criterion by maximizing separation gain between nodes

separation gain \cong gain(parent cell)-gain(daughter cell 1)-gain(daughter cell 2)

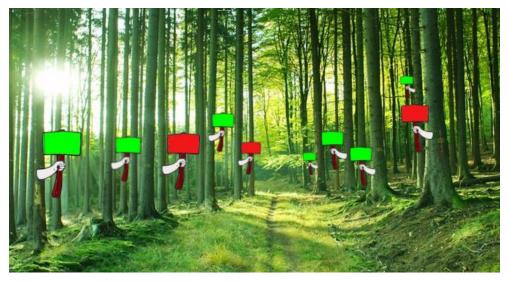
 gain can be computed in different ways, a common used one is Gini Index

$$gain(cell) \cong p \cdot (1-p), \quad p : Purity$$

• Repeat until the maximum number of nodes is reached

Random Forests

- Random Forests is an ensemble method that combines different trees
- Final output is determined by the majority vote of all trees



A Random Forest combines the votes of all trees

Random Forests

- Random Forests is an ensemble method that combines different trees
- Final output is determined by the majority vote of all trees
- The idea is, that a sum of weak learners results in a stronger learner

Simple example:

- 3 different trees which are uncorrelated and are correct in 60% of cases
- In order to correctly classify an event, only ⅔ trees have to be correct. That means, the misclassification probability is either 3 wrong or ⅔ wrong:
 P = (³₂) *0.4² * 0.6 + (³₃) * 0.4³ * 0.6⁰ = 0.352
- Therefore the ensemble of trees is better than only one tree even though their separation power is the same (if uncorrelated)

Random Forests

- Random Forests is an ensemble method that combines different trees
- Final output is determined by the majority vote of all trees
- The idea is, that a sum of weak learners results in a stronger learner

Available methods to train Random Forests:

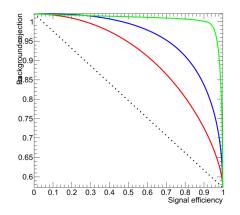
- Bagging
 - A subset of events is drawn from the training data with replacement
 - Tree is trained on this subset, this is repeated many times
- Boosting
 - Misclassified events are weighted higher so that future learners concentrate on these
 - Most commonly used method -> AdaBoost

Boosting

- AdaBoost (Adaptive Boosting):
 - Enhances weights of misclassified events and reduces weight of correctly classified
 ones after each training so that future trees learn those better
 - Iterates until weight of misclassified > 50%
 - Final weight is the sum of all classifiers weighted by their errors

ROC Curves

- ROC (Receiver Operating Characteristic) Curves are a good way to illustrate the performance of given classifier
- Shows the background rejection over the signal efficiency of the remaining sample
- Best classifier can be identified by the largest AUC (Area under curve)
- Neyman-Pearson lemma: The best ROC curve is given by the likelihood ratio L(x|S) /L(x|B)

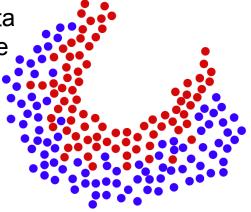


Overtraining

• Boosted Decision Trees are very easy to overtrain, that is they will learn statistical fluctuations by heart

How to avoid it:

- One should split available data in training / test data
- Performance on the training samples should not be better than on the test sample
- Pruning can cut away insignificant nodes

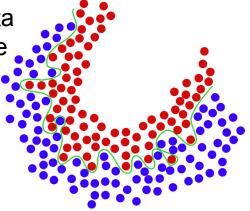


Overtraining

• Boosted Decision Trees are very easy to overtrain, that is they will learn statistical fluctuations by heart

How to avoid it:

- One should split available data in training / test data
- Performance on the training samples should not be better than on the test sample
- Pruning can cut away insignificant nodes

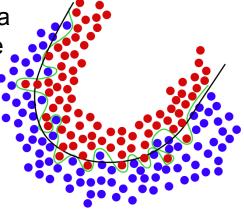


Overtraining

• Boosted Decision Trees are very easy to overtrain, that is they will learn statistical fluctuations by heart

How to avoid it:

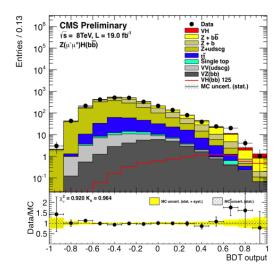
- One should split available data in training / test data
- Performance on the training samples should not be better than on the test sample
- Pruning can cut away insignificant nodes



Real life examples

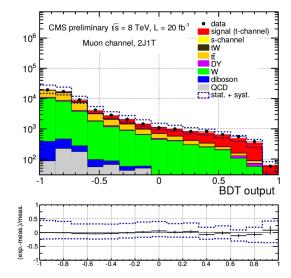
Search for Higgs $Z(\mu^+\mu^-)H(b\underline{b})$

- Very few signal events
- Only "visible" by using MVAs



Single Top Polarization

- Cut on BDT yields signal enriched sample
- Allows to study top quark properties



Demonstration of TMVA

Toolkit for MultiVariate Analysis:

- Part of ROOT
- Freely available
- Open source
- Many algorithms available: BDT, NN, LF, ...
- Commonly used in HEP

Example with TMVA (Python)

Find the scripts in this dropbox: http://goo.gl/UY4QSa

- Use same circular example from above
- data.root (created with \$ROOTSYS/tmva/test/createData/C)
 contains TreeS and TreeB with var0 and var1

Varo

-0.5 0 0.5

- simpleplot.py
 - creates plots from slide 5
- trainBDT.py with 3 different settings to show some features
 - NTrees = 5
 - NTrees = 850
 - NTrees = 2500

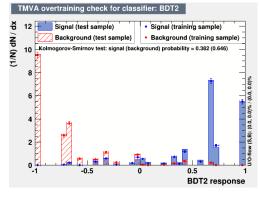
Example with TMVA (Python) II

- Automatically split into training and testing samples (if no option given)
- Created files by trainBDT.py:
 - weight file in weights/ for application
 - output file test.root with all trainings and testing outcomes
- PlotDecisionBoundary.py:
 - use original data.root as input
 - applies training weights
 - draw decision boundaries
- PlotROC.py
 - use test.root as input
 - plot ROC curves of different trainings

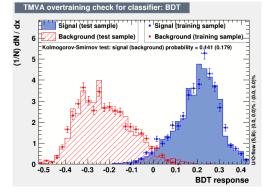
TMVA GUI (I)

- Nice tool to produce lots of not-so-nice plots:
 - SROOTSYS/test/tmva/TMVAGui.C'("test.root")'
- Option 4b (often used to check for overtraining):

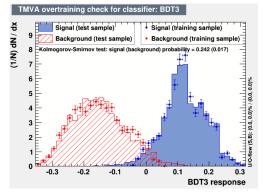
5 trees



850 trees

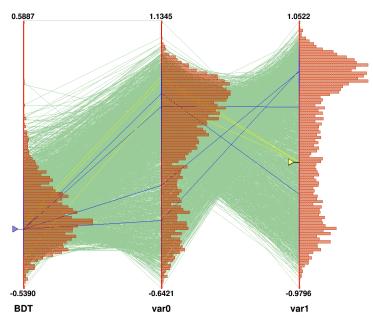


2500 trees



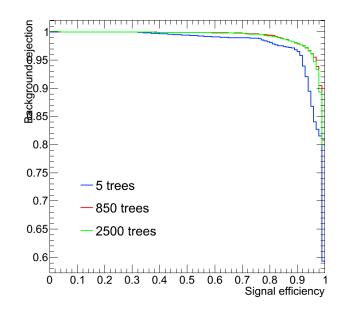
TMVA GUI (II)

• Option 6 shows path of each event



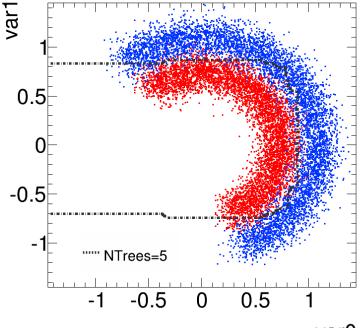
ROC curves

- Check performance of MVA by plotting background rejection over signal efficiency
- Rule of thumb:
 - Use the training with the largest integral of ROC
- In this example:
 - Performance of 5 trees suboptimal
 - 850 vs. 2500 trees almost identical



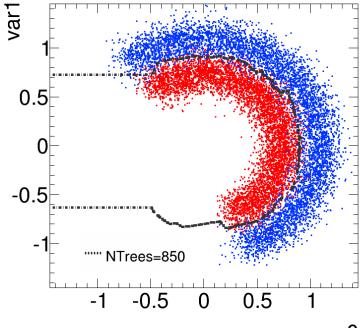
BDT with 5 trees

- Not enough trees
- Sub-optimal separation between signal and background



BDT with 850 trees

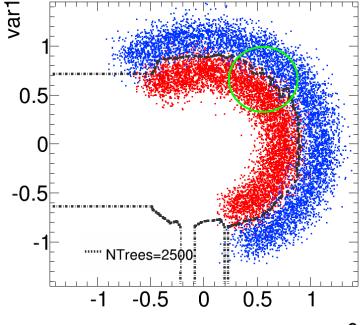
• Close to best performance



var0

BDT with 2500 trees

- MVA learns fluctuations
- Tendency towards overtraining



var0

From TMVA manual

		MVA METHOD									
CRITERIA		Cuts	Likeli- hood	PDE- RS / k-NN	PDE- Foam	H- Matrix	Fisher / LD	MLP	BDT	Rule- Fit	SVM
Perfor- mance	No or linear correlations Nonlinear correlations	*	** 0	*	*	*	** 0	**	*	**	*
Speed	Training Response	0 **	** **	** 0	** *	** **	** **	* **	• *	* **	∘ ★
Robust- ness	Overtraining Weak variables	** **	* *	* 0	* 0	** **	** **	* *	0 **	* *	** *
Curse of dimensionality		0	**	0	0	**	**	*	*	*	
Transparency		**	**	*	*	**	**	0	0	0	0