Convolutional Neural Network (CNN) for gamma-ray selection in TAIGA-IACT (standalone monoscopic mode)

Evgeny Postnikov, Alexander Kryukov, Stanislav Polyakov, Dmitry Shipilov, Dmitriy Zhurov

Why using CNN

- It's a kind of ANN that uses a special architecture which is particularly well-adapted to classify images.
- Today, deep CNN or some close variant are used in most neural networks for image recognition.
- Feature extraction is automatic instead of manual choice (Hillas parameters).

CNN for IACTs [VERITAS, H.E.S.S., CTA]

IACT name	Sample size, x10 ³	Camera pixels		N of IACTs	E,TeV of MC	Pre- selection	Soft	Tasks						
		shape	Ν					selection		estimation				
								Part. name	Q	Q _{ref}				
VE- RI- TAS		Hex	499	1?	No MC		TF /Keras	μ				_	—	Image size, image radius
H.E.S.S	2000 600	Hex	960	4	0.02-100	Yes No	TF	γ	15 14	>5.5		Θ,φ	—	_
CTA SCT	200	Sq	>11000	1	1-10	Yes	Theano /Keras	γ	2.75	9		_	—	—
CTA LST	90.5	Hex	1855	100?	0.003-330	?	TF,PT	_			E	Θ,φ	EAS core	_

CNN for IACTs [VERITAS, H.E.S.S., CTA]

CTA impressions

"CNN are capable of classifying simulated IACT images without any prior parametrization nor any assumption on the nature of the images themselves". [PoS(ICRC2017)809]

H.E.S.S. warning

- "During this study we have learned that CNNs trained on simulated events exhibit different performance when tested on a MC test-set and when analysing real-data.
- A network with the CRNN architecture that is trained to distinguish **between simulated proton images and realdata** images becomes astonishingly efficient at performing this task, with an accuracy of 99.5%.
- When testing the same classifier on a set comprised of MC γ's (which were not shown to the network during training) and MC protons, it assigns 99.6%.

• This illustrates the *risk of using simulations for training*, as DL methods for computer vision are able to easily find **features that do not exist in real-data** images". [arXiv 1803.10698]

How CNN works

- Convolutional layers apply a convolution operation (cross-correlation, or simply filtering) to the input, passing the result to the next layer, and so on.
- Special features of feedback of avoid overfitting that was the problem for conventional ANN.

How CNN is implemented

Free libraries:

80

Σ

First effort – MC data 'as is'

- Trying gamma-ray separation from proton background using Monte Carlo images without 'image cleaning' at all.
- For that purpose special Monte Carlo samples were prepared and given for analysis to both CNN packages (PyTorch, TensorFlow) as well as for a simple Hillas analysis using only two basic cuts.

Monte Carlo and blind analysis

- Training datasets: gamma-ray and proton images (Monte Carlo of TAIGA-IACT, 2-60 and 3-100 TeV respectively, exponent -2.6); NSB, trigger procedure and detector response added, but neither cleaning nor preselection applied.
- Test datasets: after CNN training, datasets (different from training ones) of gamma-ray and proton images in random proportion (blind analysis) were classified by each of the packages: TensorFlow and PyTorch. Each package output was 'probability' of any image to be gamma-ray of proton.

Simulated image example: γ (left), p (right); no cleaning (top), cleaned (bottom)

Particle identification quality

Quality factor

 $Q = \frac{\text{Significance of a } \gamma \text{-source after } \gamma \text{ separation}}{\text{Significance before separation}}$

For Poisson distribution of hadron fluctuations:

$$Q = \frac{N_{\gamma \to \gamma}/N_{\gamma}}{\sqrt{N_{hadron \to \gamma}/N_{hadron}}} = \epsilon_{\gamma}/\sqrt{\epsilon_{bckgr}},$$

 ϵ_{γ} is γ efficiency

	Simple 2-D technique	PyTorch	TensorFlow
	(image width & orientation)		
W/o image cleaning/preselection:	Q = 1.76	Q = 1.74	Q = 1.48
W/soft cleaning/preselection:	Q = 1.70	Q = 2.55	Q = 2.99

Particle identification quality

- Idea of deep learning application in our project (astroparticle.online, not TAIGA): no empirical cleaning or preselections at all => Q (and ROC curve) without preselection.
- To compare with other projects, the Q should be recalculated on a dataset subsample after preselection.
 E.g., with 8cm≤Rc≤25cm, size≥60p.e., npix≥6:
 Q(TensorFlow)=4.10 (Q(Hillas)=2.76)
 - And same but with the size≥100p.e.:
 - Q(TensorFlow)=5.43 (Q(Hillas)=3.14)

Q factor (left) and γ efficiency (right) vs CNN output parameter (various CNN after cleaning)

Preliminary conclusions

- The standard image cleaning procedure even in a very soft variant led to significant improvement of the Q-factor.
- Another yet improvement in quality of identification is due to the additional image rotation in learning sample, which allows increasing sample size.
- To get higher Q, problem of choosing CNN output parameter value should be solved: the value should be taken as much as possible (almost 1), but to avoid losing more than 50% of gamma.
- Hexagonal pixel shape should be taken into account (H.E.S.S. recommendation is whether resampling the images to a square grid or applying modified convolution kernels that conserve the hexagonal grid properties).
- Verification using experiment data is required.
- Regression task (energy etc.) study is also required.
- Of course, larger sample size is also necessary.

Backup slides

IACT applications [VERITAS, H.E.S.S., CTA]

- VERITAS: selection of muon images, PoS(ICRC2017)826.
- H.E.S.S.: selection of gamma-ray events, stereo IACTs, 960 hexagonal pixels, arXiv 1803.10698.
- CTA:
 - selection of gamma-ray events, standalone IACT,
 >11000 square pixels, PoS(ICRC2017)809.
 - energy, direction and impact point

CNN for IACTs [VERITAS, H.E.S.S., CTA]

	Camera	pixels	Tasks					
	shape	number	selection		estimatio	n		
VERITAS	hexagonal	499	muon					
H.E.S.S.	hexagonal	960	γ		direction			
CTA (SCTs)	square	>11000	γ	_	—	—		
CTA (LSTs)	hexagonal	1855	_	energy	direction	EAS core		

How CNN works

The idea of CNN is to behave in an invariant way across images.

Q vs CNN output parameter (various CNN after same soft cleaning)

After additional rotations of learning sample by 60°, so that a sample size arouse from ~30 000 to ~180 000

Number of correctly identified γ-rays vs CNN output parameter (*Problem of the 'cut value' choice*)