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Why using CNN

• It’s a kind of ANN that uses a special 
architecture which is particularly well-adapted 
to classify images. 

• Today, deep CNN or some close variant are 
used in most neural networks for image 
recognition. 

• Feature extraction is automatic instead of 
manual choice (Hillas parameters).
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CTA impressions

“CNN are capable of classifying simulated IACT 
images without any prior parametrization nor 
any assumption on the nature of the images 
themselves”. [PoS(ICRC2017)809]



H.E.S.S. warning

• “During this study we have learned that CNNs trained on 
simulated events exhibit different performance when 
tested on a MC test-set and when analysing real-data.
• A network with the CRNN architecture that is trained to 
distinguish between simulated proton images and real-
data images becomes astonishingly efficient at performing 
this task, with an accuracy of 99.5%.
• When testing the same classifier on a set comprised of 
MC 's (which were not shown to the network during 
training) and MC protons, it assigns 99.6%.
• This illustrates the risk of using simulations for training, as 
DL methods for computer vision are able to easily find 
features that do not exist in real-data images”.                   
[arXiv 1803.10698]



How CNN works
• Convolutional layers apply a convolution 

operation (cross-correlation, or simply 
filtering) to the input, passing the result 
to the next layer, and so on.

• Special features of feedback 
avoid overfitting that was the 
problem for conventional ANN.

How CNN is implemented



First effort – MC data ‘as is’

• Trying gamma-ray separation from proton 
background using Monte Carlo images 
without ‘image cleaning’ at all.

• For that purpose special Monte Carlo samples 
were prepared and given for analysis to both 
CNN packages (PyTorch, TensorFlow) as well as 
for a simple Hillas analysis using only two 
basic cuts.



Monte Carlo and blind analysis

• Training datasets: gamma-ray and proton images 
(Monte Carlo of TAIGA-IACT, 2-60 and 3-100 TeV
respectively, exponent -2.6); NSB, trigger procedure 
and detector response added, but neither cleaning nor 
preselection applied.

• Test datasets: after CNN training, datasets (different 
from training ones) of gamma-ray and proton images in 
random proportion (blind analysis) were classified by 
each of the packages: TensorFlow and PyTorch. Each 
package output was ‘probability’ of any image to be 
gamma-ray of proton.



Simulated image example:  (left), p (right); no cleaning (top), cleaned (bottom)



Particle identification quality

is  efficiency



Particle identification quality

• Idea of deep learning application in our project 
(astroparticle.online, not TAIGA): 
no empirical cleaning or preselections at all 
=> Q (and ROC curve) without preselection.

• To compare with other projects, the Q should be 
recalculated on a dataset subsample after preselection. 
E.g., with 8cm≤Rc≤25cm, size≥60p.e., npix≥6:

– Q(TensorFlow)=4.10 (Q(Hillas)=2.76)

And same but with the size≥100p.e.:

– Q(TensorFlow)=5.43 (Q(Hillas)=3.14)



Q factor (left) and  efficiency (right)
vs CNN output parameter 

(various CNN after cleaning)

After additional rotations of learning sample by 60⁰, 
so that a sample size arouse from ~30 000 to ~180 000

Problem of the output 
parameter cut value choice



Preliminary conclusions
• The standard image cleaning procedure even in a very soft 

variant led to significant improvement of the Q-factor.
• Another yet improvement in quality of identification is due 

to the additional image rotation in learning sample, which 
allows increasing sample size. 

• To get higher Q, problem of choosing CNN output 
parameter value should be solved: the value should be 
taken as much as possible (almost 1), but to avoid losing 
more than 50% of gamma.

• Hexagonal pixel shape should be taken into account 
(H.E.S.S. recommendation is whether resampling the 
images to a square grid or applying modified convolution 
kernels that conserve the hexagonal grid properties).

• Verification using experiment data is required.
• Regression task (energy etc.) study is also required.
• Of course, larger sample size is also necessary.



Backup slides



IACT applications [VERITAS, H.E.S.S., 
CTA]

• VERITAS: selection of muon images, 
PoS(ICRC2017)826.

• H.E.S.S.: selection of gamma-ray events, stereo 
IACTs, 960 hexagonal pixels, arXiv 1803.10698. 

• CTA: 
– selection of gamma-ray events, standalone IACT, 

>11000 square pixels, PoS(ICRC2017)809. 

– energy, direction and impact point

2*acosd(1-0.6/(2*pi))
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How CNN works

The idea of CNN is to behave in an invariant way 
across images. 

Simple translation of the input image 
data instead of taking some preselected
parameters of images (e.g. Hillas
parameters) lets CNN do all work fully automatically.



Q vs CNN output parameter 
(various CNN after same soft cleaning)

After additional rotations of learning sample by 60⁰, 
so that a sample size arouse from ~30 000 to ~180 000



Number of correctly identified -rays vs
CNN output parameter 

(Problem of the ‘cut value’ choice)


