

Current status of data center for cosmic rays based on KCDC

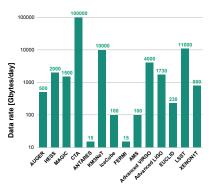
Face-to-face project meeting, Karlsruhe

Victoria Tokareva, Andreas Haungs | October 30, 2018

INSTITUTE FOR NUCLEAR PHYSICS (IKP)

German-Russian Astroparticle Data Life Cycle Initiative*

*Granted by RSF-Helmholtz Joint Research Groups


Introduction

Data life cycle

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Conclusion oo October 29, 2018 2/19

Introduction: The astroparticle physics data rate

Modern astroparticle experiments data rate [Gbytes/day]*

- More than hundred years of cosmic particle measurements;
- Looking at the same sky with different detectors;
- Common data rate for astrophysical experiments all together is a few PBytes/yeary, which is comparable to the current LHC output*
- Big data for deep learning

*Berghöfer T., Agrafioti I. et all. Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016

Victoria Tokareva, Andreas Haungs – Co	osmic rays data center based on KCDC	October 29, 2018	4/19
0000	000000000		00
Introduction	Data life cycle		Conclusion

 Experiments improve and are measuring events with greater precision (large amount of data);

Victoria Tokareva, Andreas Haungs - Cosmic ray	s data center based on KCDC	October 29, 2018	4/19
0000	000000000		00
Introduction	Data life cycle		Conclusion

- Experiments improve and are measuring events with greater precision (large amount of data);
- But not too many events of our interest;

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC	October 29, 2018	4/19
000000000000000000000000000000000000000		00
Introduction Data life cycle		Conclusion

- Experiments improve and are measuring events with greater precision (large amount of data);
- But not too many events of our interest;
 - \Rightarrow combined analysis of data from different experiments becomes topical;

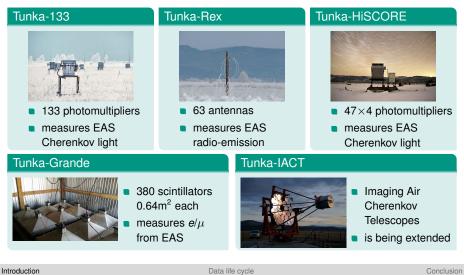
- Experiments improve and are measuring events with greater precision (large amount of data);
- But not too many events of our interest;
 - \Rightarrow combined analysis of data from different experiments becomes topical;
- Astronomical Virtual Observatories (Auger & IceCube data).

Introduction O●○○	Data life cycle		Conclusion
Victoria Tokareva, Andreas Haungs - Co	smic rays data center based on KCDC	October 29, 2018	4/19

KASCADE-Grande

Karbruhe Institute of Technology

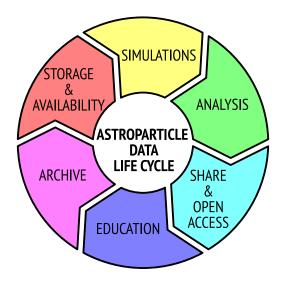
- Proposed in 1989—disassembled in 2013;
- Aimed at studying high-evergy (galactic) cosmic rays by observing extensive air showers (EAS);
- Consisted of:
 - scintillators detecting e, γ, μ :
 - KASCADE—256 stations;
 - GRANDE—37 stations;
 - Hadronic callorimeter;
 - Digital radio array LOPES detecting *e*, *e*⁺;
- Important features of cosmic-ray spectrum have been obtained. The data analysis is ongoing;
- KCDC (KASCADE Cosmic Ray Data Center, http://kcdc.ikp.kit.edu) is a dedicated portal where all the data collected are available online.



TAIGA

0000

Started in the mid 90s, is still operating and continiously enhancend



Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

October 29, 2018 6/19

Data life cycle scheme

Victoria Tokareva, Andreas Haungs - C	osmic rays data center based on KCDC	October 29, 2018	7/19
0000	000000000		00
Introduction	Data life cycle		Conclusion

Data-oriented approach

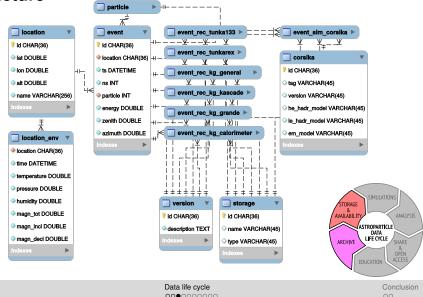
What data do we work with?

- Data types:
 - Raw detector readouts;
 - Pre-analyzed events;
 - Metadata

Our approach:

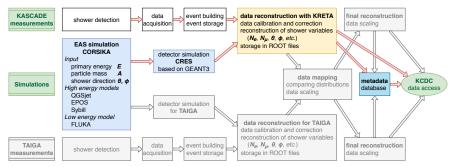
- Data structure:
 - Different formats;
 - Different messengers;
 - Common metadata
- It is proposed to store unique event id and metadata in the unified database
- With growing data sizes, distributed storage for events could be useful

Archiving and storage


Introduction

Proposed cosmic-ray metadata structure

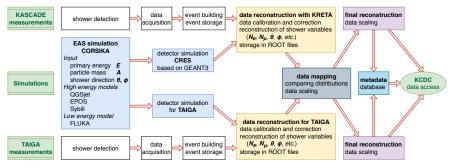
Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC


Introduction

October 29, 2018

10/19

Data workflow



Data life cycle		Conclusion
ndreas Haungs - Cosmic rays data center based on KCDC	October 29, 2018	11/19

Introduction 0000 Victoria Tokareva, Ar

Data workflow

Data life cycle		Conclusion
0000000		00
ased on KCDC	October 29, 2018	11/19

Introduction

Victoria Tokareva, Andreas Haungs - Cosmic rays data center ba

Simulation

Simulation: two steps

- Simulating EAS:
 - CORSIKA, does not depend on detector features, depends on location ans atmospheric conditions;
 - requires large computing power with a standard environment;
 - a small amount of input data and a large amount of output data;
- ② Simulating detector output:
 - depends on detector features;
 - requires dedicated software and special environment for it;
 - large amount of both input and output data;

0000

Data life cycle

Conclusion 00

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

October 29, 2018

12/19

Analysis

- Analysis could be either algorithmic or machine learning;
- Machine learning requires large enough statistics in order to work properly.

		0	a	u	С	U	0	ſ	1	
0	С	C)(С						

Data life cycle

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

October 29, 2018 13/19

Analysis features

Software for data analysis depends on a particular experiment

- Problem: It may even require dedicated system environment
- Solution: Virtualization[†]

Data analysis requires huge amounts of input data

- Problem: It is often more optimal to perform it on the same site the data are stored
- Solution: Job management

[†] "The act of creating a virtual (rather than actual) version of something, including virtual computer hardware platforms, storage devices, and computer network resources". © Wikipedia

ntroduction	Data life cycle	
0000	0000000000	
/ictoria Tokareva, Andreas Haungs -	- Cosmic rays data center based on KCDC	October 29, 2018

14/19

WMS—workload management system

- The basic idea is to provide a central queue for all users and make all the distributed sites look like local ones:
- Starting from mid 90's are widely used in collider experiments (Dirac, PanDA);
- Dedicated for:
 - Unified usage of the distributed remote data and common data analysis:
 - Conceal various low-level software and provide unified high-level interface:

Data life cycle 0000000000

- Provide the common way to issue tasks to different types of the distibuted sites;
- The same system for the data access, analysis and simulation.

15/19

October 29, 2018

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Data life cycle		Conclusion
000000000000000000000000000000000000000		00
center based on KCDC	October 29, 2018	16/19

Introduction 0000 Victoria Tokareva, Andreas Haungs – Cosmic rays data (

IceCube ?

Introduction

	Conclusion
	00
October 29, 2018	16/19

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Data life cycle

IceCube ? PanDa

Introduction

	Conclusion
	00
October 29, 2018	16/19

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Data life cycle ○○○○○○○●○

IceCube ? PanDa

Auger ?

Introduction

	Conclusion	
	00	
October 29, 2018	16/19	

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Data life cycle

IceCube ? PanDa

Auger ? DiRAC

	Conclusion
	00
tober 29, 2018	16/19

Oct

Introduction 0000 Data life cycle

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

- IceCube ? PanDa
- Auger ? DiRAC
- Other WMS ?

	Conclusion	
	00	
October 29, 2018	16/19	

Introduction

Data life cycle

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

- IceCube ? PanDa
- Auger ? DiRAC
- Other WMS ? VCondor, MyCluster, GWPilot, BigJob, ...

	Conclusio	
	00	
October 29, 2018	16/19	

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Introduction

Data life cycle ○○○○○○○●○

- IceCube ? PanDa
- Auger ? DiRAC
- Other WMS ? VCondor, MyCluster, GWPilot, BigJob, ...

APPDC - ?

Introduction	
0000	

Data life cycle

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Open access and education

- Open access: a dedicated portal planned;
- Education: astroparticle.online.

Data life cycle

0010101030 00 2018 17/19

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

October 29, 2018 1

Summary

- The KASCADE-Grande project has a data center called KCDC, that is planned to serve as the basis for the future common center for data access;
- The differences in the data formats were analyzed and solutions for organizing storage and distributed data processing were proposed;
- A scheme of a relational database for the future data center is designed using a metadata-based approach;
- The possibilities to apply the results of the project to educational and outreach activities are being explored.
- We are developing a new approach to the astroparticle data life cycle for combined analysis of the KASCADE-Grande and TAIGA data;
- The built-up infrastructure will be used to analyze combined data sets with large statistics, allowing to study galactic sources of high-energy γ-rays, which could be a notable step forward in multi-messenger astroparticle physics.

Introduction	Data life cycle		Conclusion
0000	000000000		•0
Victoria Tokareva, Andreas Haungs - Cosmic rays data cente	r based on KCDC	October 29, 2018	18/19

Thank you for your attention!

Introduction	Data life cycle		Conclusion
0000	000000000		0.
Victoria Tokareva, Andreas Haungs - Cosmic rays data	center based on KCDC	October 29, 2018	19/19

The German-Russian Astroparticle Data Life Cycle collaboration I

KASCADE - Grande

TAIGA—Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy (see taiga-experiment.info);

KASCADE-Grande—KArlsruhe Shower Core and Array DEtector—Grande (see www-ik.fzk.de/KASCADE_home.html);

KIT-IKP—Institute for Nuclear Physics Karlsruhe Institute of Technology

SCC—Steinbuch Centre for Computing Karlsruhe Institute of Technology

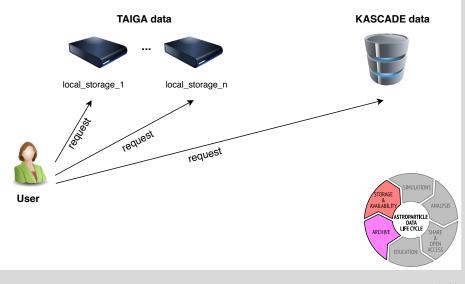
The German-Russian Astroparticle Data Life Cycle collaboration II

SINP MSU—Skobeltsyn Institute Of Nuclear Physics Lomonosov Moscow State University

ISU—Irkutsk State University

ISDCT—Matrosov Institute for System Dynamics and Control Theory

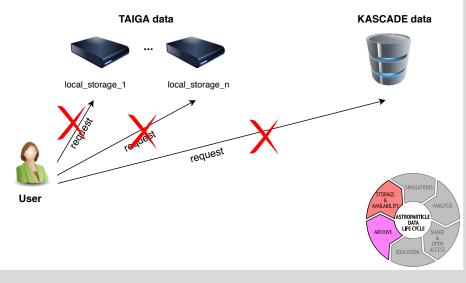
References



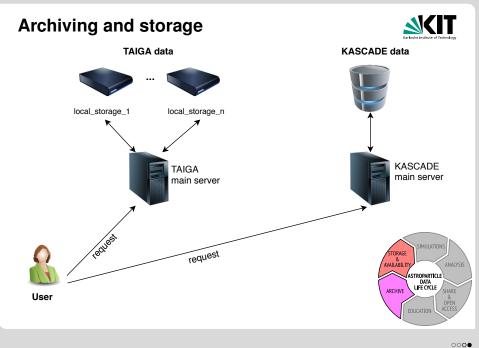
 Berghöfer T., Agrafioti I. *et al.* Towards a model for computing in European astroparticle physics, Astroparticle Physics European Coordination committee, 2016, web-source: http://appec.org/wp-content/uploads/ Documents/Docs-from-old-site/AModelForComputing-2.pdf;

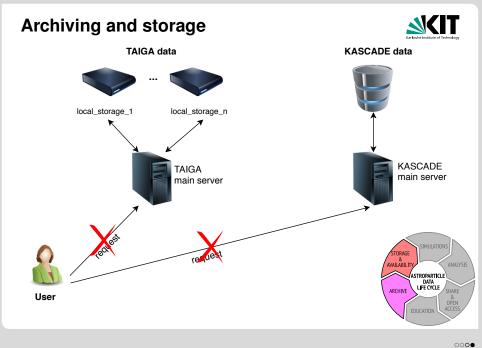
- KCDC—KASCADE Cosmic Ray Data Center, web-source: http://kcdc.ikp.kit.edu;
- KASCADE-Grande official site, web-source: http://www-ik.fzk.de/KASCADE_home.html;
- TAIGA collaboration official site, web-source: http://taiga-experiment.info;
- Astroparticle.online—outreach resource, web-source: http://astroparticle.online.

Archiving and storage



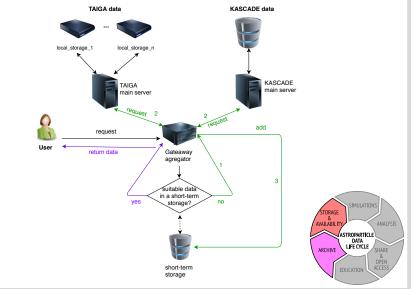
Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC


Archiving and storage


0000

23/19

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC


10

Victoria Tokareva, Andreas Haungs - Cosmic rays data center based on KCDC

Archiving and storage

0000