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Will  research in precision collider physics remain important in the 
near future (few years) ? 

Can we (the CRC)  claim to be world-leading in (at least) some 
aspects of the precision collider physics? 

This annual meeting is not an ordinary one, since  the second funding 
period is coming to an end, and we need to prepare the application for the 
third one.



3Any physics question becomes  a precision physics questions if answering it 
relies on the detailed understanding of the underlying theory.  For this reason 
alone, precision physics studies will be at  the focus of the  LHC experiments 
in the foreseeable future. 

  

Introduction

● The goal of hadron collider physics program (Tevatron, LHC) is to discover and study 

physics beyond the Standard Model in the  mass range 100 GeV - few TeV 

● To produce that heavy final states, we require rare short-distance processes where both 

protons disintegrate and all momenta transfers are large. These processes can be 

understood using factorization and asymptotic freedom.

● A major role in  such an understanding  is played by parton-parton scattering that is 

described by  perturbative QCD.
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4To be a global player in the precision collider physics, one needs to either  
advance collider theory, or (and) use these advances to do insightful 
phenomenology.  The research in the CRC has examples of both. 

Loops Radiation Parton ShowersMatching Power correctionsResummation

A1a, A1b, A3b,
B1b

A1c,B1a, B1b, 
B2a

B2a B1e



5A1a: quark-mass effects in the Higgs boson production in gluon fusion 
were studied;  a unique result of the CRC which removes  the last 
remaining N3LO uncertainty beyond the PDFs and the strong coupling. 

8. Recommendation for the LHC

In previous sections we have considered various e↵ects that contribute to the gluon-fusion

Higgs production cross-section at higher orders. In this section we combine all these e↵ects,

and as a result we are able to present the most precise prediction for the gluon-fusion cross-

section available to date. In particular (for the Setup 1 of Tab. 1) for a Higgs boson with

a mass mH = 125 GeV, the cross-section at the LHC with a center-of-mass energy of 13

TeV is

� = 48.58 pb+2.22 pb (+4.56%)

�3.27 pb (�6.72%)
(theory)± 1.56 pb (3.20%) (PDF+↵s) . (8.1)

Equation (8.1) is one of the main results of our work. In the following, we will analyze it

in some detail.

Let us start by commenting on the central value of the prediction (8.1). Since eq. (8.1)

is the combination of all the e↵ects considered in previous sections, it is interesting to see

how the final prediction is built up from the di↵erent contributions. The breakdown of the

di↵erent e↵ects is:

48.58 pb = 16.00 pb (+32.9%) (LO, rEFT)

+20.84 pb (+42.9%) (NLO, rEFT)

� 2.05 pb (�4.2%) ((t, b, c), exact NLO)

+ 9.56 pb (+19.7%) (NNLO, rEFT)

+ 0.34 pb (+0.2%) (NNLO, 1/mt)

+ 2.40 pb (+4.9%) (EW, QCD-EW)

+ 1.49 pb (+3.1%) (N3LO, rEFT)

(8.2)

where we denote by rEFT the contributions in the large-mt limit, rescaled by the ratio

RLO of the exact LO cross-section by the cross-section in the EFT (see Section 5). All the

numbers in eq. (8.2) have been obtained by setting the renormalization and factorization

scales equal to mH/2 and using the same set of parton densities at all perturbative orders.

Specifically, the first line, (LO, rEFT), is the cross-section at LO taking into account only

the top quark. The second line, (NLO, rEFT) are the NLO corrections to the LO cross-

section in the rescaled EFT, and the third line, ((t, b, c), exact NLO), is the correction

that needs to be added to the first two lines in order to obtain the exact QCD cross-section

through NLO, including the full dependence on top, bottom and charm quark masses.

The fourth and fifth lines contain the NNLO QCD corrections to the NLO cross-section

in the rescaled EFT: (NNLO, rEFT) denotes the NNLO corrections in the EFT rescaled

by RLO, and (NNLO, 1/mt) contains subleading corrections in the top mass at NNLO

computed as an expansion in 1/mt. The sixth line, (EW, QCD-EW), contains the two-

loop electroweak corrections, computed exactly, and three-loop mixed QCD-electroweak

corrections, computed in an e↵ective theory approach. The last line, (N3LO, rEFT), is

the main addition of our work and contains the N3LO corrections to the NNLO rEFT

cross-section, rescaled by RLO. Resummation e↵ects, within the resummation frameworks

studied in Section 4, contribute at the per mille level for our choice of the central scale,

µ = mH/2, and are therefore neglected.

– 38 –

GGF

GLUON FUSION - INCLUSIVE CROSS SECTION

▸ LHC predictions demand effects beyond pure EFT 

▸ Mass corrections & EWK effects

~88.2%
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u, d, s, c, b

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger 

Next, let us analyze the uncertainties quoted in our cross-section prediction. We

present our result in eq. (8.1) with two uncertainties which we describe in the following. The

first uncertainty in eq. (8.1) is the theory uncertainty related to missing corrections in the

perturbative description of the cross-section. Just like for the central value, it is interesting

to look at the breakdown of how the di↵erent e↵ects build up the final number. Collecting

all the uncertainties described in previous sections, we find the following components:

�(scale) �(trunc) �(PDF-TH) �(EW) �(t, b, c) �(1/mt)

+0.10 pb

�1.15 pb
±0.18 pb ±0.56 pb ±0.49 pb ±0.40 pb ±0.49 pb

+0.21%
�2.37% ±0.37% ±1.16% ±1% ±0.83% ±1%

In the previous table, �(scale) and �(trunc) denote the scale and truncation uncertainties

on the rEFT cross-section, and �(PDF-TH) denotes the uncertainty on the cross-section

prediction due to our ignorance of N3LO parton densities, cf. Section 3. �(EW), �(t, b, c)

and �(1/mt) denote the uncertainties on the cross-section due to missing quark-mass e↵ects

at NNLO and mixed QCD-EW corrections. The first uncertainty in eq. (8.1) is then

obtained by adding linearly all these e↵ects. The parametric uncertainty due to the mass

values of the top, bottom and charm quarks is at the per mille level, and hence completely

negligible. We note that including into our prediction resummation e↵ects in the schemes

that we have studied in Section 4 would lead to a very small scale variation, which we

believe unrealistic and which we do not expect to capture the uncertainty due to missing

higher-order corrections at N4LO and beyond. Based on this observation, as well as on the

fact that the definition of the resummation scheme may su↵er from large ambiguities, we

prefer a prudent approach and we adopt to adhere to fixed-order perturbation theory as

an estimator of remaining theoretical uncertainty from QCD.

The second uncertainty in eq. (8.1) is the PDF+↵s uncertainty due to the determina-

tion of the parton distribution functions and the strong coupling constant, following the

PDF4LHC recommendation. When studying the correlations with other uncertainties in

Monte-Carlo simulations, it is often necessary to separate the PDF and ↵s uncertainties:

�(PDF) �(↵s)

±0.90 pb +1.27pb
�1.25pb

±1.86% +2.61%
�2.58%

Since the �(↵s) error is asymmetric, in the combination presented in eq. (8.1) we conser-

vatively add in quadrature the largest of the two errors to the PDF error.

As pointed out in Section 7, the PDF4LHC uncertainty estimate quoted above does

not cover the cross-section value as predicted by the ABM12 set of parton distribution func-

tions. For comparison we quote here the corresponding cross-section value and PDF+↵s
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Czakon, Eschment, Schellenberger , Niggetiedt, Poncelet 
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6B1a: Pioneering calculations of NNLO QCD corrections to 2     3 processes 
at the LHC:  3 jet production, a prompt photon and two jets etc. 

Interesting physics to explore and main difficulties 

❖ Theory-data comparison of differential  multi-jet rates provides information about perturbative QCD and modelling jet production


❖ Ratio of three-to-two jet rates sensitive to parton splittings and then to  (in the ratio some systematic uncertainties cancel, 
as from PDFs) [CMS 1304.7498][ATLAS 1805.04691] 

 

❖ Main bottleneck:                                                                                                                                                                                       
 Involved calculation: 5 coloured partons at the Born level, 7 coloured partons for the double real, 2loop-5point amplitudes 

αs

R3/2(X, μR, μF) = dσ3(μR, μF)/dX
dσ2(μR, μF)/dX

→

Multijet processes 

25Chiara Signorile-Signorile                                                                                                                                                                                  Advances in fixed-order predictions                                                        
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NNLO QCD corrections to event shapes at the LHC
Alvarez, Cantero, Czakon, Llorente, Mitov, Poncelet, JHEP 03 (2023) 129

9

Alvarez, Cantero, Czakon, Lorente, Mitov, Poncelet
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Figure 12: Values of UB (`') determined in each bin of �T2 from fits to the TEEC distributions using theoretical
predictions with the MMHT2014, CT14 and NNPDF 3.0 PDF sets.
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Figure 13: Values of UB (`') determined in each bin of �T2 from fits to the ATEEC distributions using theoretical
predictions with the MMHT2014, CT14 and NNPDF 3.0 PDF sets.
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Subtraction scheme: Czakon, 
Czakon, Heymes

Two-loop amplitudes: Chicherin, 
Sotnikov, Gehrmann, Zhang, Henn, 
Wasser, Zola, Abreu et al. 

The ATLAS collaboration used these calculations  to 
measure  the running of the strong coupling constant at 
the O(TeV) scales.



7B1b: world-leading advances in NLO QCD computations for 
high-multiplicity processes at the LHC. 

Figure 1: Representative Feynman diagrams, involving two (first diagram), one (second diagram)
and no top-quark resonances (third diagram), contributing to the pp ! e

+
⌫e µ

�
⌫µ bb̄ � +X process at

leading order defined at O(↵2
s↵

5). Red lines correspond to top quarks, blue lines to photons.

bb ! e
+
⌫e µ

�
⌫µ bb � ,

b̄b̄ ! e
+
⌫e µ

�
⌫µ b̄b̄ � .

(5.2)

If we were able to precisely measure the charge of the two b-jets, then the last two subprocesses would
not be needed. We note, however, that the bb̄/b̄b and bb/b̄b̄ initial-state contributions to the full pp !

e
+
⌫e µ

�
⌫µ bb̄ �+X process are negligibly small and at LO amount to only 0.2% and 0.02%, respectively.

We keep the Cabibbo-Kobayashi-Maskawa mixing matrix diagonal throughout the calculations. We
use the NNPDF3.1 NLO PDF set [46] for both LO and NLO computations. The two-loop running
of ↵s is preformed with the help of the LHAPDF interface [47]. The presence of the isolated photon
in the final state requires a mixed scheme for the electromagnetic coupling constant ↵, see e.g. Refs.
[14, 16]. The total power of ↵ is split into ↵

n = ↵
n�n�

Gµ
↵(0)n� where in our case n� = 1. In particular,

we use the ↵(0) scheme for the electromagnetic coupling associated with final-state photon radiation
with ↵

�1(0) = 137.035999084 [48], while for all other powers of ↵ we use the Gµ-scheme, where ↵Gµ

is given by

↵Gµ =

p
2

⇡
Gµm

2

W

✓
1 �

m
2

W

m
2

Z

◆
, Gµ = 1.1663787 · 10�5 GeV�2

. (5.3)

For the on-shell masses and widths of the W
±
/Z weak bosons we use the values from Ref. [48]

m
OS

W = 80.377 GeV , �OS

W = 2.085 GeV ,

m
OS

Z = 91.1876 GeV , �OS

Z = 2.4955 GeV ,

(5.4)

that are translated into their pole values according to the formulas given in Ref. [49]

mV =
m

OS

Vq
1 +

�
�OS

V /m
OS

V

�2 , �V =
�OS

Vq
1 +

�
�OS

V /m
OS

V

�2 . (5.5)

The full off-shell approach requires the evaluation of the top-quark width for unstable W bosons. This
calculation is based on the results presented in Refs. [50, 51]. Specifically, we use ↵s(µR = mt) to
compute NLO QCD corrections to �t. The corresponding LO and NLO top-quark widths are given by

�LO
t = 1.4580658 GeV , �NLO

t = 1.3329042 GeV . (5.6)

The mass of the top quark is set to mt = 172.5 GeV, while all other fermions are considered massless.

– 11 –
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1) Much more complicated diagrams (pentagons vs. heptagons, 
in the above example); 

1) resonance and non-resonance diagrams are included, with all 
interferences between them;

2) finite width effects are accounted for;

3) the          signal is identified through selection cuts rather than 
by identifying diagrams with top quarks lines; allows for 
meaningful comparison with experiment.
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tt̄�

µ0 �
LO [fb] �

NLO [fb] K = �
NLO/�LO

ET /4 17.512(8)+30.9%
�22.1% 21.50(2)+1.4%

�5.0% 1.23

HT /4 19.409(9)+31.9%
�22.6% 21.38(2)+1.4%

�7.5% 1.10

mt 15.877(7)+30.1%
�21.6% 21.13(2)+1.4%

�6.4% 1.33

Table 2: Integrated cross sections at LO and NLO in QCD for the pp ! e
+
⌫e µ

�
⌫̄µ bb̄ � +X process

at the LHC with
p
s = 13.6 TeV. Results are calculated with the fixed-cone isolation using the ALEPH

LO quark-to-photon fragmentation function. They are presented for the three scale choices µ0 = ET /4,
µ0 = HT /4 and µ0 = mt with the NNPDF3.1 NLO PDF set. Also displayed are the theoretical
uncertainties coming from a 7-point scale variation (± percentages) and Monte Carlo integration errors
(in brackets). In the last column the K-factor is shown.

pT, � , �Rµ�� and �Rb1� . The upper panels provide the NLO QCD results with the fixed-cone and
smooth-cone isolation prescriptions. In the later case the following input parameters are employed
("� , n) = (1.00, 0.5) with R = 0.4. This set of parameters led to the largest differences of about 5% at
the integrated cross-section level compared to the calculation with the fixed-cone isolation. Finally, the
lower panels display the ratio to the result obtained with the fixed-cone isolation prescription. Also for
this comparison the theoretical uncertainties coming from a 7-point scale variation and Monte Carlo
integration errors are given.

In the case of cos ✓b1b2 , the two results differ by about 4% � 5%, which is caused mainly by
the difference in the normalisation. However, larger effects can be found in particular phase-space
regions for other differential cross-section distributions. Specifically, for the transverse momentum of
the photon (pT, �), the differences between the two isolation criteria increase towards the tail of the
distribution from about 5% up to 10%. On the other hand, for the angular separation between the
charged lepton and the photon (�Rµ��) they are again rather constant and at the level of 5%. Only
for �Rµ�� > 4 these differences increase to more than 10%. However, these particular phase-space
regions are affected by a small number of events. For the angular separation between the hardest b-jet
and the photon (�Rb1�), we find similar differences of about 10% for larger angular separations. In
this case, however, the additional phase-space regions with small angular separations are also affected.
For �Rb1� < 1 we can observe differences between the two NLO QCD predictions up to even 20%.
Finally, in all four cases presented here, the theoretical predictions calculated using the smooth-cone
isolation lie outside of the uncertainty bands of the results obtained with the help of the fixed-cone
isolation. We conclude this section by stating that the random choice of the input parameters ("� , n) in
the smooth-cone isolation criterion can introduce additional unnecessary uncertainties and may affect
current and future comparisons with the LHC data.

8 NLO QCD predictions with the fixed-cone isolation prescription

In the last part of the paper we present the state-of-the-art theoretical predictions for the pp !

e
+
⌫e µ

�
⌫̄µ bb̄ � +X process with the fixed-cone isolation taking into account full off-shell effects in the

calculations. In our analysis we focus on the NLO QCD results obtained with various scale choices,
presented for the LHC III energy of

p
s = 13.6 TeV. In particular, we study three different settings

covering our default scale choice, µR = µF = µ0 = ET /4, and the two additional scale settings
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8A1c: impact of  non-factorizable effects, and QCD corrections to Higgs 
decays to bottom quarks on the Higgs boson production cross section in 
weak boson fusion.

Results 11/15

𝜎/fb fixed order LO+PS MiNNLO+PSLO 75.6 46.6 45.2NLO 52.4 43.6(1) 42.3NNLO 44.6(1) 43.1(1) 41.4(1)
(number in parenthesis indicates Monte-Carlo uncertainty)

Parton shower in the decay subprocess resums most of the large corrections
and dramatically improves stability across different ordersK. Asteriadis, A. Behring, K.M., I. Novikov, R. Roentsch

A. Behring, K.M., I. Novikov,  G. Zanderighi
<latexit sha1_base64="gK89ZzHYo5k5C7hCG2JC1URTNSA="></latexit>

�NNLO

nf
= (�3.1 + 0.53) fb

Numerics: Jets

transverse momentum distribution rapidity distribution
(2nd jet) (1st jet)

A. Penin, U of A RADCOR 2019 – p. 16/19

Ch. Bronnum-Hansen,  M.M. Long,  K.M. J. Quarroz

Liu, Melnikov, Penin

v.s.
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FIG. 1. The Feynman diagrams for the Higgs boson pro-
duction in VBF: (a) the Born amplitude, (b, c) the one-loop
nonfactorizable QCD corrections. The solid, dashed, wavy
and loopy lines stay for quark, Higgs, vector boson and gluon
fields, respectively.

p
+

2
, respectively. Then in the eikonal approximation a

gauge boson coupling to the quark line with momentum
p1 (p2) is obtained by replacing the corresponding cur-
rent jµ with its light-cone component j� (j+) while the
quark propagators are replaced as follows

1

/p
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+ /k + i✏
!

�
±

2k± + i✏
, (1)

where �
± are the light-cone components of the Dirac �-

matrices.
In the VBF process Higgs bosons are produced at

central rapidities so that they are well-separated from
the tagging jets. This ensures that momentum transfers
q3 = p3�p1 and q4 = p4�p2 mostly have transverse com-
ponents q3,4 while their light-cone component are sup-
pressed by p3,4,?/

p
s. Thus, the Higgs boson emission

does not spoil the applicability of the eikonal approxima-
tion.

We continue with the discussion of the nonfactoriz-
able QCD corrections. In the one-loop approximation
the relevant diagrams are shown in Fig. 1(b,c). Since
electroweak vector bosons do not carry color, the one-
loop contribution to the cross section vanishes at NLO
by color conservation. Nevertheless, the square of the
one-loop amplitude contributes to the NNLO cross sec-
tion along with the generic two-loop nonfactorizable cor-
rections. In both cases the two gluons connecting the
di↵erent quark lines must be in a color-singlet configura-
tion. Thus we can compute the corrections by replacing
gluons by abelian gauge bosons with the e↵ective cou-

pling ↵̃s =
⇣

N
2
c
�1

4N2
c

⌘1/2
↵s, where Nc = 3 and the prefactor

arises from averaging over colors. Considering the sum
of the planar and non-planar diagrams in Figs. 1(b,c),
we find that the eikonal quark propagators add up to
1/(2k± + i✏) � c.c. = �i⇡�(k±). Hence, when the two
diagrams are combined, the virtual quark propagators
are replaced by �(k+) and �(k�) and the light-cone dy-
namics decouples. Thus the computation of the nonfac-
torizable one-loop contribution is reduced to the analysis
of the e↵ective Feynman diagram shown in Fig. 2(a) in
the two-dimensional transversal space. In the eikonal ap-
proximation QCD corrections are diagonal in the chiral
basis. This implies that (for a given type of electroweak

(a) (b)

FIG. 2. One- and two-loop transversal space Feynman dia-
grams.

gauge bosons that fuse into the Higgs) the Born ampli-
tude M

(0) factors out. Hence, the expression for the
one-loop amplitude can be written as follows
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where MV = MZ,W is an electroweak boson mass.
We note that the function �

(1) is ultraviolet-finite but
infrared-divergent. To regulate the infrared divergence,
we introduced an auxiliary gluon mass �. Moreover, the
function �

(1) is explicitly real, so that the entire one-
loop correction is imaginary. This is yet another reason,
in addition to color conservation, that leads to vanishing
interference between the one-loop amplitude computed
in the eikonal approximation and the leading order am-
plitude.
At two loops the structure of the corrections is simi-

lar. In the color-singlet configuration the gluon vertices
commute and the factorization property of the eikonal
approximation [15] can be applied. As a result the sum
over all the permutations of the gluon and vector-boson
vertices reduces to the e↵ective transversal space diagram
in Fig. 2(b) [12]. The corresponding expression for the
amplitude reads
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Squaring the sum of tree-, one- and two-loop contribu-
tions to the scattering amplitude, we obtain the NNLO
QCD correction to the cross section due to nonfactoriz-
able contributions
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FIG. 1. The Feynman diagrams for the Higgs boson pro-
duction in VBF: (a) the Born amplitude, (b, c) the one-loop
nonfactorizable QCD corrections. The solid, dashed, wavy
and loopy lines stay for quark, Higgs, vector boson and gluon
fields, respectively.
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pressed by p3,4,?/
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does not spoil the applicability of the eikonal approxima-
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We continue with the discussion of the nonfactoriz-
able QCD corrections. In the one-loop approximation
the relevant diagrams are shown in Fig. 1(b,c). Since
electroweak vector bosons do not carry color, the one-
loop contribution to the cross section vanishes at NLO
by color conservation. Nevertheless, the square of the
one-loop amplitude contributes to the NNLO cross sec-
tion along with the generic two-loop nonfactorizable cor-
rections. In both cases the two gluons connecting the
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1/(2k± + i✏) � c.c. = �i⇡�(k±). Hence, when the two
diagrams are combined, the virtual quark propagators
are replaced by �(k+) and �(k�) and the light-cone dy-
namics decouples. Thus the computation of the nonfac-
torizable one-loop contribution is reduced to the analysis
of the e↵ective Feynman diagram shown in Fig. 2(a) in
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gauge bosons that fuse into the Higgs) the Born ampli-
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where MV = MZ,W is an electroweak boson mass.
We note that the function �

(1) is ultraviolet-finite but
infrared-divergent. To regulate the infrared divergence,
we introduced an auxiliary gluon mass �. Moreover, the
function �

(1) is explicitly real, so that the entire one-
loop correction is imaginary. This is yet another reason,
in addition to color conservation, that leads to vanishing
interference between the one-loop amplitude computed
in the eikonal approximation and the leading order am-
plitude.
At two loops the structure of the corrections is simi-

lar. In the color-singlet configuration the gluon vertices
commute and the factorization property of the eikonal
approximation [15] can be applied. As a result the sum
over all the permutations of the gluon and vector-boson
vertices reduces to the e↵ective transversal space diagram
in Fig. 2(b) [12]. The corresponding expression for the
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Squaring the sum of tree-, one- and two-loop contribu-
tions to the scattering amplitude, we obtain the NNLO
QCD correction to the cross section due to nonfactoriz-
able contributions
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9A1c: in the context of  the soft-collinear subtraction scheme, finite 
remainders for arbitrary processes with massless partons at NNLO QCD, 
for both  lepton and a hadron colliders, have been derived. 

 1) Color correlations are handled globally, with the help of the  generalization of Catani’s operator I1 , that combines               
color-correlated  contributions from virtual, soft and soft-collinear terms;

2) Collinear contributions through NNLO are shown to factorize leg-by-leg (as it should be), enabling  generalization to arbitrary 
processes in a relatively straightforward manner; 

3) Cancellation of 1/ep divergencies at NNLO has been demonstrated for the very first time in a process-independent way.

4) These results put the understanding of NNLO QCD subtractions on par with the understanding of NLO QCD subtractions, at 
least inasmuch as their generality is concerned.

F. Devoto,  K.M., R. Röntsch, C. Signorile-Signorile, D.M. Tagliabue, M. Tresoldi 

We started extending the nested soft-collinear subtraction scheme to accommodate  massive color-
charged partons: semi-analytic results for the integrated NNLO eikonal function for massless-massive 
emitters, and massive-massive emitters with momenta at an   arbitrarty angle have been obtained. 

D. Horstmann,  M.M. Long, K.M., A. Pikelner
M.M. Long, K.M., A. Pikelner  



10B1a, B2a & B1e: slicing schemes with the N-jettiness variable were explored 
from various perspectives; groundbreaking results have been achieved. 
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11B2a & B1a: the N-jettiness soft function for arbitrary N was computed by 
two CRC groups independently of each other, with different motivations. 
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1 = ✓(x1 � x2)✓(x2 � x3) + ✓(x1 � x2)✓(x3 � x2)

+ ✓(x2 � x1)✓(x1 � x3) + ✓(x2 � x1)✓(x3 � x1)

In the traditional approach, that goes back to papers where the N-jettiness variable was introduced,  one  resolves 
the  minimum condition for the jettiness function  by  partitioning the phase space.  This  approach was  used 
earlier for calculations with  N=0,1,2; it is hard to imagine how it  can be used for arbitrary number of jets. 

B2a: Can one design a robust numerical code 
(SoftServe) to compute arbitrary soft functions, 
including the N-jettiness one? 

B1a: Can one use a local subtraction, treat N-jettiness as 
an infra-red safe variable, extract analytically the 1/ep 
poles and compute the rest in an efficient numerical way? 

G. Bell, B. Dehnadi, T. Mohrmann, R. Rahn P. Agarwal, K.M., I. Pedron 
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Dipoles
Gluons Quarks

G
nl
ij Ref. [37] Q

nl
ij Ref. [37]

12 71.15 ± 0.05 71.11 ± 0.12 -27.837 ± 0.001 -27.841 ± 0.011

13 36.27 ± 0.02 36.17 ± 0.07 -21.719 ± 0.005 -21.724 ± 0.009

23 75.79 ± 0.01 75.62 ± 0.09 -27.804 ± 0.002 -27.807 ± 0.011

14 65.48 ± 0.02 65.38 ± 0.09 -25.660 ± 0.003 -25.666 ± 0.010

24 46.25 ± 0.01 46.15 ± 0.06 -22.933 ± 0.005 -22.908 ± 0.009

34 44.86 ± 0.02 44.72 ± 0.09 -22.513 ± 0.004 -22.518 ± 0.009

Table 2. Comparison of the selected results for the 2-jettiness soft function for the kinematic point
in Eq. (D.6). When quoting results for functions Gnl

ij , Q
nl
ij , we show Vegas integration errors which,

most likely, underestimate the true uncertainties of the result.

D.3 3-jettiness

We parameterize the scattering of the additional jet by ✓15 and �5

n5 = (sin ✓15 cos�5, sin ✓15 sin�5, cos ✓15). (D.7)

We compare in Table 3 our 3-jettiness dipole contributions to the benchmark result in [37]

by taking the following phase space point

✓13 =
3⇡

10
, ✓14 =

6⇡

10
, ✓15 =

9⇡

10
, �4 =

3⇡

5
, �5 =

6⇡

5
. (D.8)

Dipoles
Gluons Quarks

G
nl
ij Ref. [37] Q

nl
ij Ref. [37]

12 116.20 ± 0.01 116.20 ± 0.16 -36.249 ± 0.001 -36.244 ± 0.009

13 38.13 ± 0.03 37.63 ± 0.03 -21.717 ± 0.007 -21.732 ± 0.005

14 63.63 ± 0.01 63.66 ± 0.06 -25.189 ± 0.003 -25.192 ± 0.006

15 107.17 ± 0.01 106.99 ± 0.12 -35.268 ± 0.001 -35.256 ± 0.009

23 97.11 ± 0.01 96.97 ± 0.10 -32.875 ± 0.002 -32.872 ± 0.008

24 67.36 ± 0.02 67.51 ± 0.08 -26.821 ± 0.003 -26.815 ± 0.007

25 30.87 ± 0.03 30.73 ± 0.04 -21.561 ± 0.009 -21.561 ± 0.005

34 69.43 ± 0.01 69.24 ± 0.07 -25.854 ± 0.002 -25.861 ± 0.006

35 106.13 ± 0.02 105.97 ± 0.13 -34.799 ± 0.002 -34.796 ± 0.008

45 74.45 ± 0.02 74.36 ± 0.09 -28.247 ± 0.004 -28.251 ± 0.007

Table 3. Comparison of the selected results for the 3-jettiness soft function for the kinematic point
in Eq. (D.8). When quoting results for functions Gnl

ij , Q
nl
ij , we show Vegas integration errors which,

most likely, underestimate the true uncertainties of the result.

For the tripole contribution in this configuration, there are four independent color

structures. In Table 4 we present our results for each of these configurations, as defined

in [37].
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c̃
(2,124)
tripoles c̃

(2,125)
tripoles c̃

(2,145)
tripoles c̃

(2,245)
tripoles

c̃tripoles -683.25 ± 0.01 -2203.3 ± 0.2 -6.324 ± 0.004 -0.837 ± 0.008

Ref. [37] -683.23 ± 0.04 -2203.5 ± 0.1 -6.325 ± 0.04 -0.830 ± 0.039

Table 4. Same as in Table 3 for the four independent triple-color correlated contributions.

References

[1] F. Caola, K. Melnikov and R. Röntsch, Nested soft-collinear subtractions in NNLO QCD
computations, Eur. Phys. J. C 77 (2017) 248 [1702.01352].

[2] S. Frixione and M. Grazzini, Subtraction at NNLO, JHEP 06 (2005) 010 [hep-ph/0411399].

[3] A. Gehrmann-De Ridder, T. Gehrmann and E.W.N. Glover, Antenna subtraction at NNLO,
JHEP 09 (2005) 056 [hep-ph/0505111].

[4] J. Currie, E.W.N. Glover and S. Wells, Infrared Structure at NNLO Using Antenna
Subtraction, JHEP 04 (2013) 066 [1301.4693].

[5] G. Somogyi, Z. Trocsanyi and V. Del Duca, Matching of singly- and doubly-unresolved limits
of tree-level QCD squared matrix elements, JHEP 06 (2005) 024 [hep-ph/0502226].

[6] G. Somogyi and Z. Trocsanyi, A Subtraction scheme for computing QCD jet cross sections at
NNLO: Regularization of real-virtual emission, JHEP 01 (2007) 052 [hep-ph/0609043].

[7] V. Del Duca, C. Duhr, A. Kardos, G. Somogyi and Z. Trócsányi, Three-Jet Production in
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For the tripole contribution in this configuration, there are four independent color

structures. In Table 4 we present our results for each of these configurations, as defined

in [37].
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We also note that for the comparison of the triple-color correlated contributions, we

do not set these logarithms to zero but take ū = µ = 1 instead. As the result, we should

set Lki ! 1/2 ln ⌘ki in Eq. (7.14).

D.1 1-Jettiness

In order to compare our numerical results, we parameterize our phase space in a similar

way as done in Ref. [37]. In the case where there are two back-to-back beams and one jet

confined in a plane, we parameterize the scattering by the angle ✓13 using the following

momenta,

n1 = (0, 0, 1), n2 = (0, 0,�1), n3 = (sin ✓13, 0, cos ✓13). (D.3)

In order to compare a phase space point where the jet is separated from the beams, we

take

✓13 =
12⇡

25
. (D.4)

In Table 1 we present the results for the non-logarithmic coe�cient of the renormalized

1-jettiness soft function, which are in agreement with the ones in Ref. [37].

Dipoles
Gluons Quarks

G
nl
ij Ref. [37] Q

nl
ij Ref. [37]

12 48.10 ± 0.01 48.04 ± 0.07 -23.504 ± 0.001 -23.503 ± 0.010

13 36.81 ± 0.02 36.82 ± 0.04 -21.871 ± 0.003 -21.875 ± 0.009

23 38.14 ± 0.01 38.13 ± 0.05 -22.039 ± 0.002 -22.031 ± 0.009

Table 1. Comparison of the selected results for the 1-jettiness soft function for the kinematic point
in Eq. (D.4). When quoting results for functions Gnl

ij , Q
nl
ij , we show Vegas integration errors which,

most likely, underestimate the true uncertainties of the result.

D.2 2-jettiness

We again consider the configuration where there are two back-to-back beams. We param-

eterize the scattering of the two jets by ✓13, ✓14 and �4 as

n1 = (0, 0, 1), n2 = (0, 0,�1),

n3 = (sin ✓13, 0, cos ✓13), n4 = (sin ✓14 cos�4, sin ✓14 sin�4, cos ✓14).
(D.5)

Considering a generic phase space point where the beams and jets are separated from each

other, we take

✓13 =
6⇡

25
, ✓14 =

13⇡

25
, �4 =

⇡

5
. (D.6)

Results for all possible dipole coe�cients are presented on Table 2. In the case of 2-jettiness,

the tripole contribution can be reduced to a single color structure, fABC T
A
1 T

B
2 T

C
3 . The

renormalized sum of all tripole contributions in this configuration is 1064.77± 0.08, which

is in agreement with the value (1064.6± 0.1) reported in [37].
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Results for all possible dipole coe�cients are presented on Table 2. In the case of 2-jettiness,

the tripole contribution can be reduced to a single color structure, fABC T
A
1 T

B
2 T

C
3 . The

renormalized sum of all tripole contributions in this configuration is 1064.77± 0.08, which

is in agreement with the value (1064.6± 0.1) reported in [37].
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13 The renormalized N -jettiness soft function

We are now in a position to present the renormalized N -jettiness soft function through

NNLO in the perturbative expansion in QCD. We write

S̃ = 1 + S̃1 + S̃2 +O(↵3
s). (13.1)

It is convenient to introduce the following short-hand notations

Lij = ln(ū
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p
⌘ijµ), L

 
ij,m = ln

✓
 m⇢ij

⇢im⇢jm

◆
. (13.2)

The NLO contribution reads

S̃1 = as

X

(ij)

Ti ·Tj


2L2

ij + Li2(1� ⌘ij) +
⇡
2

12
+

⌧
L
 
ij,m

⇢ij

⇢im⇢jm

�

m

�
. (13.3)

The NNLO contribution is constructed from di↵erent pieces. We write

S̃2 =
1

2
S̃
2
1+a

2
sCA

X

(ij)

Ti ·Tj Gij+a
2
s nf TR

X

(ij)

Ti ·Tj Qij+a
2
s⇡
X

(kij)

F
kij

kjG
triple
kij . (13.4)

The function Gij reads

Gij =
22

9
L
3
ij +

✓
67

9
�
⇡
2

3

◆
L
2
ij + Lij

⇣11
3

⌧
L
 
ij,m

⇢ij

⇢im⇢jm

�

m

+
11

3
Li2(1� ⌘ij)

+
202

27
� 7⇣3

⌘
+

*
⇢ij

⇢im⇢jm

 ⇣
L
 
ij,m

⌘2✓11

6
� ln

✓
⌘ij

⌘im⌘jm

◆◆

+ L
 
ij,m

⇣
2 ln2

✓
⌘ij

⌘im⌘jm

◆
+ ln

✓
⌘ij

⌘im⌘jm

◆✓
�
11

3
+ ln(⌘im⌘jm)

◆
+

137

18
�
⇡
2

2

�
1

2
ln2
✓
⌘im

⌘jm

◆
+ Li2(1� ⌘ij) +

11

3
ln 2�

11

6
ln(⌘im⌘jm)�

(⇢im + ⇢jm)

3⇢ij

⌘!+

m

+

⌧
A

fin
ij,m

✓
11

6
L
 
ij,m �

11

6
ln

⌘ij

⌘im⌘jm
+

131

72

◆�

m

– 36 –

Comparison of the results of the two 
independent calculations (G. Bell et al. and P. 
Agarwal et al.)  performed within the CRC. 

B2a & B1a: calculation of the NNLO soft function for arbitrary N is a step  
beyond the state-of-the-art in this field. 



13B2a: continuous development of a numerical code for calculating  soft, 
beam and jet functions in SCET, including complex observables. The code 
is a unique framework for computing SCET ingredients with the NNLO 
accuracy.
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Figure 3: The same as in Fig. 2 for the NNLO gluon kernels defined in (4.8).

accuracy of our numerical results is excellent, reaching a few percent only in those regions,
in which the central values themselves are very small. Moreover, one observes that most
of the kernels diverge at both endpoints z ! 0 and z ! 1, and the latter behaviour is
particularly interesting for the off-diagonal I

(2,CA)
q g (z) kernel, since the curve asymptotes to

+1 for A = 0.5 in this case, whereas it points into the opposite direction for A = 0 and
A = �1. In order to verify if this is the correct scaling in the threshold limit, we performed
an analytical study for this particular matching kernel, yielding

I
(2,CA)
q g (z)=

2(4 � 16A + 13A2)

3(2 � A)2
ln3(1 � z)+

✓
2(2 � 3A)

2 � A
+

4A(5 � 3A)

(2 � A)2
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ln(1 � z)+. . .

(4.9)

up to terms that are not logarithmically enhanced (or power-suppressed) in the threshold
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Matching beam-function coefficients  at NNLO for a maximally non-abelian color factor for three 
angularities (left) and three values of jet radius R for the jet-veto case.

G. Bell, K. Brune, G. Das. M. Wald 
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Figure 4: Endpoint regions z ! 0 (upper row) and z ! 1 (lower row) for the same matching
kernels as in the lower panels of Fig. 3, where our results are shown in colour and the ones from [30]
in gray. The smallest z values (upper row) and the largest z values (lower row) of the grids provided
in [30] are indicated by the dashed vertical lines.

the scheme-dependent kernels from [30] with the corresponding soft function [28] in order
to extract the refactorised matching kernels according to (2.4). Using (2.15) and (4.4) one
then determines the grid contributions I(2,Grid)

i j (z,R), which we use for the comparison.
Specifically, we define the ratios

e⇠(2,X)
i j (z) =

h
I(2,X)
i j (z)

i

Numericalh
I(2,X)
i j (z)

i

Ref. [30]

, (4.8)

which are displayed for two template kernels in the lower panels of Fig. 3. As is evident
from these plots, we find a very good agreement between the two calculations for all values
of the momentum fraction z (the pattern around the zeroes of the matching kernels being
similar to the one in the upper panels). In order to verify if this agreement persists in the
endpoint regions z ! 0 and z ! 1, where most of the kernels are enhanced, we show the
same matching kernels in those regions in Fig. 4. While it becomes hard to distinguish
our results (in colour) from the ones of [30] (in gray) in these plots, we find (i) that the
agreement extends nicely into both endpoint regions, and (ii) that our numbers are stable
even for extreme values of z, which allows one to sample these regions to very high accuracy.
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G. Bell, K. Brune, G. Das. D.Y. Shao, M. Wald 



14B1a: the pioneering computation of the zero-jettiness soft function at 
N3LO QCD was completed in the second funding period.

n

n̄

2-loop tree

n

n̄

1-loop 1-loop

n

n̄

1-loop tree

n

n̄

tree tree

Figure 1. Different contributions to the zero-jettiness soft function at N3LO, see text for details.
Only contributions with final-state gluons are shown. Diagrams to the right of the cut are complex-
conjugated.

where kij = ki + kj and k123 = k1 + k2 + k3. In section 4 we explain how to use the
integration-by-parts technology [106] to express integrals in eqs. (2.13-2.16) through a
smaller set of master integrals. However, before doing this, we will discuss a peculiar
issue that we encountered while working on the computation of the soft function, namely
the existence of integrals that are not regulated dimensionally.

3 Integrals not regulated dimensionally

In refs. [4, 5] we have pointed out that some master integrals required for the triple-real
contribution to the N3LO zero-jettiness soft function are not regulated dimensionally.5 Our
calculation is not the first one to face this problem in QCD perturbation theory [126–128].
The standard way to treat this problem is to introduce an analytic regulator into the in-
tegration measure for all integrals. Unfortunately, the new regulator – which appears
alongside with the dimensional one – makes the required computations significantly more
complex, so that finding ways to avoid ill-defined integrals becomes important.

Our experience with computing the N3LO real-emission master integrals for the soft
function indicates that several conditions need to be satisfied for such integrals to become
unregulated. In particular, it is necessary that one of the Sudakov variables is small, and
the other one is large, that their product is O(1) and that it appears in one of the prop-
agators. This can be understood from the fact that the integration measure dF depends

on the dimensional regularization parameter through a factor
3

’
i=1

(aibi)�#. Obviously, if

ai ⇠ 1/aj, bi ⇠ 1/b j or ai ⇠ 1/b j, the dimensional regulator becomes ineffective.
To understand if such scalings lead to integrals with a non-vanishing support, we can

assume, without loss of generality, that the smallest variable is b1 ⇠ l ! 0 and that the
largest variable is either a1 ⇠ l�1 or a2 ⇠ l�1, or b2 ⇠ l�1. We are interested in finding
integrals where the l ! 0 limit is non-trivial, and leads to non-vanishing integrals that
are not regulated dimensionally.

Consider the case b1 ⇠ l and a1 ⇠ 1/l, with l ! 0. Inverse propagators with

5Note that this problem did not arise for the real-emission contributions with two real partons both at
NNLO and N3LO [2, 6].
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Figure 3. Singularities of M(#, m2) in the vicinity of m2 = 0. The singularities located in the right
half-plane of m2 are colored in red, while other singularities are colored in blue. The path that we
follow to move from m2 = • to m2 = 0 is shown in green.

on the imaginary axis of m2

m2
⇡ {�4, �1, �0.649511, �0.5625, �0.5, �0.444,

�0.33, �0.25, �0.203125 ± 0.289379i, �0.2,

�0.1412, �0.125, �0.125 ± 0.21651i, �0.0625,

�0.042480 ± 0.11756i, �0.015625, �0.00903, ±0.5i}.

(6.8)

Finally, there are 15 poles in the half-plane where Re(m2) > 0,

m2
⇡ {0.125, 0.25, 0.203125 ± 0.289379i, 0.375,

0.3966835638, 0.5, 0.5162444550, 0.5625,

0.6495190528, 0.75, 1, 2.25, 4.362345770, 16}.

(6.9)

These different singularities of the matrix M are illustrated in fig. 3, and, as we already
mentioned, all J(#, m2) integrals have to remain regular in the half-plane to the right of the
imaginary axis.

Furthermore, when m2 is real and positive, the phase-space integrals should also be
real. While this sounds completely obvious, it provides a useful consistency check for
the solutions of the differential equations, especially if one starts at complex infinity and
moves towards a positive real axis.
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In the above equation LS = log
�
µū

p
sab/P

�
and ū = uegE .

The renormalized soft function reads

S̃ (as, LS) = Zs (as, LS) S̃B (as, LS) , (9.10)

where both as and LS depend on the scale µ. The constant Zs fulfills the renormalization
group equation [95, 150–152]
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log Zs (as, LS) = �4Gcusp(as)LS � 2gs(as), (9.11)

where the b-function and the anomalous dimensions can be found in appendix A. Solving
the renormalization group equation, we find the renormalization constant Zs; the result is
given in appendix A. Using it in eq. (9.10), we obtain the renormalized soft function.

It is convenient to write the renormalized soft function in an exponential form. To
this end, we define the logarithm of the soft function s̃(LS) = log S̃(LS) and write its
perturbative expansion as

s̃(LS) = log
⇥
S̃(LS)

⇤
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•

Â
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Â
j=0

Ci,jL
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S . (9.12)

Coefficients of terms with non-vanishing powers of logarithm Ls in eq. (9.12) follow from
the renormamlization group analysis and can be calculated from the following recurrence
relation

Ci,j =

 
2
j
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Â
k=1

Ck,j�1bi�1�k

!
� 2

�
dj,2Gi�1 + dj,1gs

i�1
�

. (9.13)

In eq. (9.13), bi, Gi and gs
i are the As-expansion coefficients of the b-function, cusp anoma-

lous dimension and soft anomalous dimension, respectively. They can be found in ap-
pendix A, c.f. eqs. (A.2,A.4,A.6). Explicit expressions for coefficients Cij in eq. (9.13) are
presented in appendix A as well.

The coefficients Ci,0, i = 1, 2, 3, have already been provided in ref. [1]. We repeat them
here for completeness
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The numerical constants truncated to sixteen significant digits are given by [1]
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and ū = uegE .

The renormalized soft function reads

S̃ (as, LS) = Zs (as, LS) S̃B (as, LS) , (9.10)

where both as and LS depend on the scale µ. The constant Zs fulfills the renormalization
group equation [95, 150–152]

✓
∂

∂LS
+ bas

∂

∂as

◆
log Zs (as, LS) = �4Gcusp(as)LS � 2gs(as), (9.11)

where the b-function and the anomalous dimensions can be found in appendix A. Solving
the renormalization group equation, we find the renormalization constant Zs; the result is
given in appendix A. Using it in eq. (9.10), we obtain the renormalized soft function.

It is convenient to write the renormalized soft function in an exponential form. To
this end, we define the logarithm of the soft function s̃(LS) = log S̃(LS) and write its
perturbative expansion as

s̃(LS) = log
⇥
S̃(LS)

⇤
=

•

Â
i=1

ai
s

i+1

Â
j=0

Ci,jL
j
S . (9.12)

Coefficients of terms with non-vanishing powers of logarithm Ls in eq. (9.12) follow from
the renormamlization group analysis and can be calculated from the following recurrence
relation

Ci,j =

 
2
j

i�1

Â
k=1

Ck,j�1bi�1�k

!
� 2

�
dj,2Gi�1 + dj,1gs

i�1
�

. (9.13)

In eq. (9.13), bi, Gi and gs
i are the As-expansion coefficients of the b-function, cusp anoma-

lous dimension and soft anomalous dimension, respectively. They can be found in ap-
pendix A, c.f. eqs. (A.2,A.4,A.6). Explicit expressions for coefficients Cij in eq. (9.13) are
presented in appendix A as well.

The coefficients Ci,0, i = 1, 2, 3, have already been provided in ref. [1]. We repeat them
here for completeness

C1,0 = �CRp2, C2,0 = CR

"
n f TF

✓
80
81

+
154p2

27
�

104z3

9

◆

� CA

✓
2140
80

+
871p2

54
�

286z3

9
�

14p4

15

◆#
,

C3,0 = CR

"
n2

f T2
F

✓
265408

6561
�

400p2

243
�

51904z3

243
+

328p4

1215

◆

+ n f TF (CFXFF + CAXFA) + C2
AXAA

#
,

(9.14)

The numerical constants truncated to sixteen significant digits are given by [1]
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XFF = 68.9425849800376,

XFA = 839.7238523813981, (9.15)

XAA =�753.7757872704537.

10 Conclusion

Recently [1], we have presented the calculation of N3LO QCD corrections to the zero-
jettiness soft function. The technical details of the computation were not discussed in that
reference. The goal of this paper is to fill this gap and to provide a detailed discussion of
the theoretical methods employed and developed by us in the course of that computation.
A particularly challenging contribution at N3LO QCD is the triple real-emission correc-
tion since in this case the phase space includes one Heaviside functions per soft parton
making it especially complex.

Methods discussed in this paper encompass the extension of reverse unitarity [129]
to real-emission integrals with q-function constraints, the need to introduce an analytic
regulator and the idea of “filtering”, which allows us to remove this regulator from the
properly-constructed integration-by-parts identities, computation of phase-space integrals
using differential equations obtained by introducing an auxiliary parameter, calculation
of boundary conditions as well as numerical computation of zero-jettiness phase-space
integrals which turns out to be quite demanding. We hope that theoretical methods de-
veloped by us in the context of the zero-jettiness soft function computation and presented
in this and earlier papers [5, 6, 93], will be useful for extending the N-jettiness slicing
scheme to arbitrary number of hard partons at N3LO in perturbative QCD.
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given in appendix A. Using it in eq. (9.10), we obtain the renormalized soft function.
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lous dimension and soft anomalous dimension, respectively. They can be found in ap-
pendix A, c.f. eqs. (A.2,A.4,A.6). Explicit expressions for coefficients Cij in eq. (9.13) are
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The numerical constants truncated to sixteen significant digits are given by [1]
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15B1a: extending the zero-jettiness soft function calculation to the one-
jettiness one is a tall order.  One important ingredient for this step — the 
one-loop correction to the double-soft current for arbitrary number of 
hard emitters was also obtained as part of the CRC research effort.
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Figure 7. Diagrams with two Wilson lines that contribute to J
p1q
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Figure 8. Remaining diagrams with two Wilson lines that only contribute to �J
p1q.

Applying this relation to the diagrams in Fig. 7 yields two contributions. The first of these is just:

1

2

´!
J

p1qa1
↵1

pq1q,Jp0qa2
↵2

pq2q
)

`
!
J

p1qa2
↵2

pq2q,Jp0qa1
↵1

pq1q
)¯

“
´
J

p1qa1
↵1

pq1qJp0qa2
↵2

pq2q ` J
p1qa2

↵2
pq2qJp0qa1

↵1
pq1q

¯

´ 1

2

´”
J

p1qa1
↵1

pq1q,Jp0qa2
↵2

pq2q
ı

`
”
J

p1qa2
↵2

pq2q,Jp0qa1
↵1

pq1q
ı¯

.

(3.9)

The bracket on the second line matches the respective term in Eq. (3.2), while the bracket on the

third line contributes to �J
p1qa1a2

↵1↵2
pq1, q2q with the colour structure:

fa1bdfa2cdT
b
iT

c
j , i ‰ j . (3.10)

The second contribution resulting from the application of the eikonal identity (3.8) to the diagrams

in Fig. 7 is proportional to exactly the same colour structure (3.10).

Turning to the last set of diagrams depicted in Fig. 8, we notice that the anti-commutator in

the eikonal identity (3.8) now only yields scaleless integrals, hence only the commutator actually

contributes to �J
p1qa1a2

↵1↵2
pq1, q2q. In consequence, the only colour structure present in contributions

due to two Wilson lines is that given in (3.10).

In view of the above colour-structure analysis, the soft current has the following form after using
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Figure 1. Double soft-gluon emission diagram
involving four Wilson lines. The loop integral is
scaleless and vanishes.

Figure 2. Double soft-gluon emission diagram
involving three Wilson lines. The contribution is a
product of tree-level and one-loop single soft-gluon
emissions.

line of the r.h.s. of Eq. (2.18) covers the case of independent emissions by two di↵erent hard partons.

However, it also contains the abelian part of the emission by the same parton, where the colour-charge

operators are e↵ectively commuting, because the product of two colour-charge operators acting on

the same line is replaced by their anti-commutator (see Eq. (3.8) below). Hence, the second line of

Eq. (2.18) is purely non-abelian. On the other hand, because the tree-level current for single soft-gluon

emission does not vanish identically when contracted with the soft-gluon momentum, Eq. (2.15), the

terms on the first and second lines of Eq. (2.18) do not satisfy the Ward identity (2.8) separately.

Nevertheless, the identity is satisfied by the sum:

q↵1
1 J

p0qa1a2
↵1↵2

`
q1, q2

˘
“

ˆ
´ �a1cJp0qa2

↵2

`
q2

˘
` 1

2

q1↵2

q1 ¨ q2
ifa1a2c

˙ ÿ

i

T
c
i . (2.19)

3 Double soft-gluon emission

3.1 Structure in colour and spin space

Let W pnq
i be the order-n truncation of the formal Taylor expansion in gBs of the Wilson-line operator

Wi defined in Eq. (2.4) for outgoing and in Eq. (2.6) for incoming partons:

Wi ” W pnq
i ` O

´`
gBs

˘n`1
¯

, W p0q
i “ . (3.1)

According to Eq. (2.3), the one-loop soft current for double soft-gluon emission, Jp1qa1a2
↵1↵2

pq1, q2q, defined

by Eq. (2.9) with n “ 2, contains terms stemming from products W pn1q
i1

¨W pn2q
i2

¨ ¨ ¨ ¨ ¨W pnW q
iW

with ni ° 0

and n1`¨ ¨ ¨`nW “ n`2´ng, where ng is the power of gBs due to QCD interactions. The only diagram

generated by four non-trivial Wilson lines is depicted in Fig. 1. The loop integral in this diagram is

scaleless, which implies that this contribution vanishes. An example diagram generated by three non-

trivial Wilson lines is depicted in Fig. 2. All diagrams of this type are entirely described by the product

of one-loop and tree-level soft currents for single soft-gluon emissions. In fact, the diagram of Fig. 2

is the only one that does not involve a scaleless integral and is thus the only one that contributes. We

thus define the non-trivial part of the double soft-gluon emission current, �J
p1qa1a2

↵1↵2
pq1, q2q, as follows:

J
p1qa1a2

↵1↵2
pq1, q2q “

´
J

p1qa1
↵1

pq1qJp0qa2
↵2

pq2q ` J
p1qa2

↵2
pq2qJp0qa1

↵1
pq1q

¯
` �J

p1qa1a2
↵1↵2

pq1, q2q . (3.2)

In principle, one could proceed as in the case of the tree-level soft current, Eq. (2.18), and use anti-

commutators instead of simple products, Jp1q
J

p0q Ñ 1{2
 
J

p1q,Jp0q(. Then, however, �J
p1qa1a2

↵1↵2
pq1, q2q
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16B1e:  Power corrections in collider processes: commonalities between 
perturbative and non-perturbative aspects of the problem. 
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Figure 5: Plot of �NP [pt?] /pt? as function of ⌧ . The global factor of ↵s/(2⇡) ⇡�/mt has

been set to one.

6 Applications to simple kinematic distributions

In this section we compute the linear power corrections to three simple observables – the top

quark transverse momentum, the top quark rapidity and the tt̄ invariant mass – focusing on

the process qq̄ ! tt̄ with no additional colour-neutral particles in the final state. Complete

formulas for other processes e.g. qq̄ ! tt̄ + X and e+e� ! tt̄ + X are given in Appendix

B.

The well-known expressions for the top quark transverse momentum, its rapidity in

the partonic center-of-mass frame and the tt̄ invariant mass read

pt? =
q

pµt g?,µ⌫p⌫t , yt =
1

2
ln

pq̄pt
pqpt

, stt̄ = (pt + pt̄)
2, (6.1)

where

gµ⌫? =
pµq p⌫q̄ + pµq̄ p⌫q

pqpq̄
� gµ⌫ . (6.2)

Applying the formalism of Section 5 and defining ⌧ = 4m2
t /stt̄, we find

�NP [pt?]

pt?
=

↵s

2⇡

⇡�

mt

(2CF � CA⌧)

2(1 � ⌧)
, (6.3)

�NP [yt] =
↵s

2⇡

⇡�

mt


(3CA � 8CF ) ⌧ cosh2 yt � (CA � 2CF )

⌧(2 � ⌧)

4(1 � ⌧)
sinh (2yt)

�
, (6.4)

�NP [stt̄]

stt̄
=

↵s

2⇡

⇡�

mt


2CF (1 � ⌧) � CA ⌧ cosh (2yt) + (3CA � 8CF ) ⌧ sinh (2yt)

�
. (6.5)

Interestingly, these shifts exhibit non-trivial dependencies on the QCD colour factors

and on the kinematics of the underlying qq̄ ! tt̄ process. To visualise them, we display the

shifts in Figs. 5 - 7. We observe that the transverse momentum shift is large and negative

around the partonic threshold and that the sign is driven by the non-Abelian Casimir CA.
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Figure 8: Non-perturbative shifts in top quark transverse momentum, lab-frame rapidity

and tt̄ invariant mass distributions at the Tevatron for the qq̄ ! tt̄ process. The center-of-

mass energy is set to
p

s = 1.8 TeV. The upper pane shows the leading order distribution.

The lower pane shows the ratio ��NP/d�LO = [d�LO(v + �vNP) � d�LO(v)]/d�LO for an

observable v a↵ected by a non-perturbative shift �vNP. See text for details.

7 Conclusions

In this paper we computed linear non-perturbative O(⇤QCD) corrections to top quark pair

production in hadron collisions under the assumption that qq̄ ! tt̄ is the dominant par-

tonic channel. Our starting point is the renormalon model. Traditionally, the renormalon

calculus is used to compute linear power corrections to processes without gluons at the tree

level, which is clearly not the case for the tt̄ production in hadron collisions. However, we

have argued that, for quark initiated partonic processes, i.e. for qq̄ ! tt̄, the renormalon

calculus is still applicable, because of the large virtuality of the gluon in the Born diagram.

We have shown how to compute the linear power corrections e�ciently using a gener-

alisation of the Low-Burnett-Kroll theorem to processes with colour charges. In this case,

the first subleading soft corrections can be written in terms of colour-correlated matrix

elements, in a form that exhibits the dipole structure typical of soft radiation. We have

further shown that, for inclusive total cross sections expressed through a short-distance
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Hence, to visualise the shifts in yt and stt̄, we use two-dimensional plots in ⌧ and cos ✓, see

Figs. 6 - 7.

A peculiar feature of these shifts is that they induce forward-backward asymmetry

in tt̄ production. This is obvious from the presence of sinh(2yt) terms in eqs. (6.4, 6.5).

Moreover, these yt-odd shifts are again enhanced in the threshold region. To see this, we

expand eq. (6.4) around threshold, ⌧ = 1, and find

lim
⌧!1

�NP[yt] = �
↵s

2⇡

⇡�

mt

(CA � 2CF )

2(1 � ⌧)
yt. (6.8)

Comparing this shift with the shift of pt? in the threshold region, we observe that the

relative shifts are, in fact, identical and determined by the same colour factors involving

both CF and CA,

lim
⌧!1

�NP[yt]

yt
= lim

⌧!1

�NP [pt?]

pt?
. (6.9)

In contrast to this, the relative shift for the tt̄ invariant mass in the threshold region is

constant and involves only the non-Abelian colour factor,

lim
⌧!1

�NP [stt̄]

stt̄
= �

↵sCA

2⇡

⇡�

mt
. (6.10)

In the opposite ⌧ = 0 limit which correspond to the high-energy regime, we note that,

while the shift in yt vanishes, the relative shifts of pt? and stt̄ are purely “Abelian” and

can be related to the shift in the mass redefinition as follows

�NP [mt]

mt
= lim

⌧!0

�NP [pt?]

pt?
=

1

2
lim
⌧!0

�NP [stt̄]

stt̄
=

↵sCF

2⇡

⇡�

mt
. (6.11)

We have also computed the non-perturbative shifts for basic top-quark kinematic dis-

tributions in the pp̄ ! tt̄ process at the Tevatron; the results are shown in Fig. 8. To

assign a numerical value to the product of ↵s and the gluon mass �, we assume that the

non-perturbative shift in the value of the top quark pole mass is 200 MeV [41–43]. Then,

using eq. (4.29) we obtain

↵s� =
0.4 GeV

CF
= 0.3 GeV. (6.12)

Furthermore, we employ the central value of the NNPDF31 lo as 0118 parton distribution

function [44], take mt = 172.5 GeV and set the factorisation and the renormalisation scales

to µF = µR = mt.8

We observe (c.f. Fig. 8) that non-perturbative corrections in pt? and stt̄ distributions

can be significant in the corresponding threshold regions. Although in pt? distribution

large e↵ects are confined to a region which ends about 5 GeV above the pt?-threshold,

for the tt̄ invariant mass distribution O(1%) e↵ects appear in a broader interval of the

invariant masses that extends to about 450 GeV. Non-perturbative corrections to the

rapidity distribution are small at central rapidities but become larger at |yt| > 1.5 where

the leading order rapidity distribution starts to decrease rapidly.
8
The numerical value of the top quark mass is chosen for the illustration purposes only. In principle,

as we mentioned several times in the text, we must use a short-distance top quark mass to ensure that

O(⇤QCD) corrections to the total cross section vanish.
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[5, 9] quote an additional experimental uncertainty
in their final results, which is however much smaller
than the theory error we also implement.

Despite these di�erences, it is a non-trivial result that our
final numbers in the R schemes shown in Fig. 8 and sum-
marized in Tab. II are very similar to the ones obtained
in [5, 9]. To make this statement more quantitative, we
quote the final numbers obtained in [5],

–s(mZ) = 0.1135 ± 0.0011 ,

�1(R�, R�) = (0.323 ± 0.051) GeV , (45)

which should be compared to our R2010 numbers, whereas
the results of the thrust analysis in [9],

–s(mZ) = 0.1128 ± 0.0012 ,

�1(R�, R�) = (0.322 ± 0.068) GeV , (46)

were derived in a setup that is closer to our R2018 scheme.
Note that the NP parameter is evaluated here at a
slightly larger reference scale R� = 2 GeV than for the
numbers quoted above (the evolution to 1.5 GeV is only
a minor e�ect that reduces the value of �1 by ≥ 4%).
Roughly speaking, these numbers translate into an error
ellipse that is similar in size to the red one in Fig. 8,
but slightly shifted downwards. We will, in fact, identify
one e�ect that drives the ellipse into this direction in the
following section.

In view of this agreement, we may thus state that our
analysis, which is based on a completely independent set
of codes, for the first time confirms the results of [5, 9],
regarding the degree to which their extracted value of –s

sits lower than the PDG world average. We consider this
important cross-check to be the third core conclusion of
our work.

E. On the Three-Loop Soft Constant c3
S̃

As mentioned in Sec. II, there exist two approxima-
tions for the three-loop soft matching coe�cient c

3

S̃
in

the literature, namely the EERAD3 extraction from [39]
we have reported in (9) and which is used in our anal-
ysis, and the Padé approximant given in (10) that was
implemented in prior –s fits [5, 9]. A priori the impact of
varying this constant should be small, given that it rep-
resents a three-loop e�ect. In this section we point out
at least two ways that this statement should be qualified.

First, we study the role of c
3

S̃
in {–s, �1} fits, and

provide a more direct comparison between our results
presented above and those of [5, 9]. To this end, we
compare in Fig. 10 the 95% C.L. ellipses for {–s, �1} ob-
tained when N3LLÕ + O(–2

s
) theory predictions are fitted

to Q = mZ datasets, in the R2010 scheme. In particu-
lar, the red ellipse corresponds to our default choice of c

3

S̃

given in (9), including its error, whereas the brown ellipse
in Fig. 10 uses instead the Padé approximant in (10),
including again its quoted error. The errors quoted in
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FIG. 10: Comparison of two {–s, �1} extractions that
either use the EERAD3 value c

3

S̃
= ≠19988 ± 5440 (red)

or the Padé approximant c
3

S̃
= 691 ± 1000 (brown).

(9)-(10) are by themselves actually very minor contribu-
tions to the total error ellipses in Fig. 10. The di�erences
in the two central values, however, is much larger. As a
result, one notices a significant downward shift of our de-
fault 95% C.L. ellipse, which in fact brings our numbers
into even better agreement with the results from [5], as
can be verified by comparing to the numbers quoted in
(45). As the two values of c

3

S̃
di�er by more than 3‡, on

the other hand, the two ellipses barely overlap. We thus
consider the variation of c

3

S̃
as another systematic theory

uncertainty that may be larger than previously expected
(especially due to the instablities in EERAD3 at small ·

described in Sec. II B), although its impact on the deter-
mination of –s itself may only be limited as the plot in
Fig. 10 suggests.

In addition there is a second reason why a better de-
termination of the three-loop soft constant may be war-
ranted, which is related to the R0 renormalon scheme
that we introduced in Sec. III B, but which we largely
disregarded in this section because of stability issues. To
illustrate these, we show in Fig. 11 the analogous plots to
the ones in Fig. 4, but for the R0 schemes. In particular,
the upper panels show the result for 2018 profiles (left)
and 2010 profiles (right), when the default value of c

3

S̃

from (9) is used. Away from the central · domain, one
clearly observes that the theoretical predictions are not
improved when increasingly higher perturbative orders
are included. This e�ect is particularly pronounced for
the 2018 profile scans, and it is true despite the fact that
we have already tuned the ranges for some of the param-
eters in Tab. I, and only allowed for 0.25 Æ eH Æ 1.25
and ≠0.5 Æ eJ Æ 0.5 (≠0.75 Æ eJ Æ 0.75) variations
in the R0

2018
(R0

2010
) scenarios. We recall that the R0

scheme is special, since it is sensitive to one higher power
of logarithms in its subtraction terms and, critical to the
present discussion, the three-loop soft constant c

3

S̃
, which

is not yet exactly known—cf. App. B. We therefore ex-
pect that a concrete determination of this constant, and
perhaps a more refined set of profile variations, could
eventually stabilize these curves as well. Regardless, to
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FIG. 8: Result of a global fit to thrust data using N3LLÕ + O(–2
s
) theory predictions and a fitting window

6/Q Æ · Æ 0.33. The plots show the –s ≠ �1 plane (Left) and –s ≠ ‰
2

dof
plane (Right) for four di�erent

renormalon-cancellation and profile-variation schemes. The ellipses in the left panel correspond to 95% C.L..

ues of –s and �1, while largely consistent with one an-
other, span a range that extends well beyond that of
any one scheme alone. This represents the first core ob-
servation of our work, namely that changing between
di�erent, well-defined renormalon-cancellation schemes
and/or profile scale variations can lead to noticeably dif-
ferent extractions of {–s, �1}. This may be viewed as
an indication of additional systematic theory uncertain-
ties. On the other hand, a theoretically motivated reason
to stick to a single scheme could, of course, remove this
uncertainty. That being said, the schemes we include in
Fig. 8 represent only a subset of possible schemes ex-
hibiting reasonably good perturbative convergence and
quality of fit—two criteria that could be used to prefer a
particular scheme.

The NP corrections embedded in our framework have
been derived from a dijet soft function that enters the
factorization theorem (5). It has recently been argued
[19–21] that other sources of NP corrections become rel-
evant in the far-tail region of the distribution that may
not be negligible over the entire domain 6/Q Æ · Æ 0.33
used in the previous fits. Related to this, we observe
in Fig. 5 that the scheme dependence we consider has
its most prominent e�ects in the far-tail region as well.
We therefore consider an alternative fit window with
6/Q Æ · Æ 0.225 in the remainder of this section that
concentrates more on purely dijet events. The total num-
ber of bins in this setup is then reduced from 488 to
371. As an indication, the perturbative variations of the
Q = mZ thrust distributions in the di�erent schemes
shown in Fig. 5 can be reduced from . 12% at the up-
per boundary of our default fit window (· = 0.33) to
. 5% at the upper boundary of the reduced fit window
(· = 0.225). We examine next if this has a noticeable
imprint on the {–s, �1} extractions.

In the two panels of Fig. 9 we compare results that
were obtained using this ‘dijet fit window’ (dashed con-
tours) to the ones with the default fit window (solid con-
tours) that were already shown in Fig. 8. In the left plot
one sees that this change has only a mild e�ect on the

{–s, �1} extractions (as previously noted in [5]), with the
most prominent e�ect being a shift of the R2018 ellipse to
slightly larger –s values. As a result, the overall spread of
the fit results among the four considered schemes is just
slightly reduced in this setup. These observations are
also given numerically in the last two columns of Tab. II.
In the right panel of Fig. 9, on the other hand, one ob-
serves that the more prominent e�ect of narrowing the
fit window is a universal trend towards lower ‰

2

dof
values

among all considered schemes, despite the fact that the
number of bins used in these analyses has been reduced
significantly. This improvement is especially noticeable
for the Rı

2010
scheme (in blue), where the overwhelming

number of fits drops below the ‰
2

dof
= 1 contour, and

which yields –s values that are more compatible with
the PDG world average than the other schemes.

To summarize, we find that fits that are based on a
more central dijet-type · domain seem to yield higher-
quality results for {–s, �1} extractions than those includ-
ing data from the far-tail region, where multi-jet events
start to dominate. This represents the second core obser-
vation of our analysis, which suggests that precision fits
on a more limited dijet window may provide an alterna-
tive to the strategy proposed e.g. in [22], in the absence
of a model-independent understanding of NP corrections
associated with tri- and multi-jet events. From Fig. 9,
on the other hand, we only see slight evidence for any
substantial qualitative improvement in the agreement be-
tween di�erent schemes when considering more central ·

fits. In other words, over the range of schemes we con-
sider, using a narrower, higher-quality fit window does
not by itself remove the potential systematic uncertainty
on {–s, �1} coming from this scheme dependence.

D. Comparison to Prior Results

While there exist a number of dedicated thrust-based
–s extractions in the literature (see e.g. [5, 8, 9, 59]), our
framework is particularly close to the one used in [5, 9],

The comparison of different renormalon subtraction 
schemes on the extracted value of the strong coupling 
constant and the non-perturbative shift parameter

G. Bell, C. Lee, Y. Makris, J. Talbert, B. Yan 



19B1e:  next-to-soft contribution of one-loop amplitudes & next-to-
collinear at tree level in  QCD. 

4 Soft expansion of massless one-loop QCD amplitudes

4.1 Theorem

The main result of this publication is the following next-to-leading-power-accurate soft expansion of

a one-loop massless-QCD amplitude:
ˇ̌
ˇM p1q

g ptpi ` �iu, qq
E

“ Sp0qptpiu, t�iu, qq
���M p1qptpiuq

E

` Sp1qptpiu, t�iu, qq
���M p0qptpiuq

E
`

ª 1

0
dx

ÿ

i

Jp1q
i px, pi, qq

���Hp0q
g,i px, tpiu, qq

E

`
ÿ

i‰j

ÿ

ãi‰ai
ãj‰aj

S̃p1q
aiaj – ãiãj , ij

ppi, pj , qq
���M p0qptpiuq

ˇ̌
ˇai Ñ ãi
aj Ñ ãj

E
`

ª 1

0
dx

ÿ

i
ai“g

J̃p1q
i px, pi, qq

���Hp0q
q̄,i px, tpiu, qq

E

` Op�q .

(4.1)

The soft operator Sp1qptpiu, t�iu, qq is an extension of the one-loop soft current, and is given by

the expansion through O
`
�
0
˘

of the r.h.s. of:

Pgp�, cqSp1qptpiu, t�iu, qq ` Op�q “ 2 rSoft

✏2

ÿ

i‰j

if
abcTa

iT
b
j b

˜
´

µ
2
s

p�q
ij

s
p�q
iq s

p�q
jq

¸✏«
Sp0q
i ppi, �i, q, �q

` ✏

1 ´ 2✏

1

pi ¨ pj

˜
p
µ
i p

⌫
j ´ p

µ
j p

⌫
i

pi ¨ q
`

p
µ
j p

⌫
j

pj ¨ q

¸
Fµ⇢pq, �q

`
Ji ´ Ki

˘ ⇢
⌫

�
, (4.2)

with:

s
p�q
ij ” 2 ppi ` �iq ¨ ppj ` �jq ` i0`

, s
p�q
iq ” 2 ppi ` �iq ¨ q ` i0`

, s
p�q
jq ” 2 ppj ` �jq ¨ q ` i0`

, (4.3)

rSoft ” �3p1 ´ ✏q�2p1 ` ✏q
�p1 ´ 2✏q “ 1 ` Op✏q . (4.4)

For convenience, we have not expanded the factor containing s
p�q
ij , s

p�q
iq and s

p�q
jq . A strict expansion

depends on:

sij ” 2 pi ¨ pj ` i0`
, siq ” 2 pi ¨ q ` i0`

, sjq ” 2 pj ¨ q ` i0`
, (4.5)

and on the scalar products of �i and �j with pi, pj and q. Finally, we notice that contractions of Kµ⌫
i

with other vectors can be conveniently evaluated with the help of Eq. (2.33).

The flavour-o↵-diagonal soft operator is given by:

S̃p1q
aiaj – ãiãj , ij

ppi, pj , qq
��. . . , c1

i, . . . , c
1
j , . . . ; . . . , �

1
i, . . . , �

1
j , . . .

D

“ ´ rSoft

✏p1 ´ 2✏q

˜
´ µ

2
sij

siqsjq

¸✏ ÿ

�c

ÿ

�ici

ÿ

�jcj

ÿ

�2
i c

2
i

ÿ

�2
j c

2
j

$
’&

’%

T
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j c

2
i
v̄ppj , �2

j q {✏˚pq, pi, �q uppi, �2
i q for ai “ q or ãi “ q̄

T
c
c2
i c

2
j
v̄ppi, �2

i q {✏˚pq, pi, �q uppj , �2
j q for ai “ q̄ or ãi “ q

ˆ
@
ci, c

2
j ; �i, �

2
j

ˇ̌
Splitp0q

ai˜̃aj – ãi
ppi, pj , piq

ˇ̌
c

1
i; �

1
i
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2
i ; �j , �
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i
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Splitp0q
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ppj , pi, pjq

ˇ̌
c

1
j ; �

1
j

D

ˆ |. . . , ci, . . . , cj , . . . , c; . . . , �i, . . . , �j , . . . , �y ,

(4.6)
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ppi, pj , qq
���M p0qptpiuq

ˇ̌
ˇai Ñ ãi
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An example of an operator: 

Next-to-soft contribution for  one-loop amplitudes in QCD admits a nearly factorized representation which 
generalizes the tree-level next-to-soft theorems (the analog of  Burnett-Kroll-Low in QED).

M. Czakon, F. Eschment, T. Schellenberger



20B1e: exploration of power corrections to N-jettiness slicing scheme at 
NLO QCD. 

A combination of Lorentz transformations and momenta redefinitions, 
familiar from the subtraction methodology,  allowed  us to factorize phase 
spaces and matrix elements with sub-leading power accuracy. 

Z
|M|

2 FJ d�d =

�Z

0

⇥
|M|

2 FJ d�d

⇤
simp

+

1Z

�

|M|
2 FJ d�4 +O(�)
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= O(1) +O(�)

We have obtained N-jettiness power correction to the production of 
1) an arbitrary colorless final state in hadron collisions;
2) a prompt photon and a jet in collisions of a quark and an antiquark, for 

a fully realistic jet algorithm.

Until earlier this year, no results for power corrections in the N-jettiness variable were known, except for the 
production of a single vector boson in hadron collisions.  Methodology used to obtain them was not generalizable 
to more complex cases. 

Figure 1. The ratio of the cross section using the truncated analytic N-jettiness NLO cross section
�analytic(⌧max, ⌧min) against the numeric NLO jet cross section �num(⌧max, ⌧min), for three di↵erent
cases: including only the leading-power (LP) contributions, the LP + leading-logarithmic (LL)
next-to-leading power (NLP) corrections, and the LP + full NLP corrections. It is important to
note that the three curves in the plot intersect at 1 for ⌧ < 10�3. {fig1}

There are several further directions that will be interesting to investigate in the future.

First, in this paper we have relied on the explicit form of the matrix element and did

not attempt to design a process-independent framework similar to what has been done in

Ref. [62] for color-singlet final states. It will be interesting to understand how to generalize

this approach to final states with arbitrary number of jets where full expressions for relevant

matrix elements cannot be used.

Second, it is worthwhile to extend the current analysis to processes with an on-shell

vector boson in the final state. Third, one of the reasons that the analytic expressions for

power corrections are somewhat complicated, are the derivatives of the observable. It will

be useful to design a framework that will allow us to treat them as changes in kinematics

of observable quantities in a more universal and easy-to-handle way. Finally, it would be

interesting to extend the analysis of power corrections in the N -jettiness variable to next-

to-next-to-leading order. Although the complexity of this step remains outstanding, we

hope that the improved understanding of subleading power corrections provided by this

paper and also by Ref. [62] constitutes a good starting point for attempting it.

Acknowledgments

This research was supported by the Deutsche Forschungsgemeinschaft (DFG, German Re-

search Foundation) under grant no. 396021762 - TRR 257.

– 30 –

P. Agarwal, K.M., I. Pedron 



21

1) Not only will research in precision collider physics remain important in 
the near future, but its relevance will certainly  increase. It will largely 
define the scientific legacy of the LHC. 

2) The CRC  is world-leading  in several aspects of precision collider 
physics.

3) The CRC has  been at the forefront of both technological developments 
for collider theory,  and insightful phenomenology, that has significantly 
impacted Higgs physics, top quark physics and jet physics. 

Conclusions


