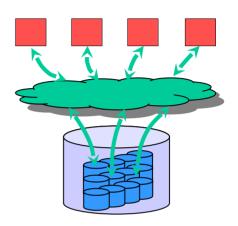
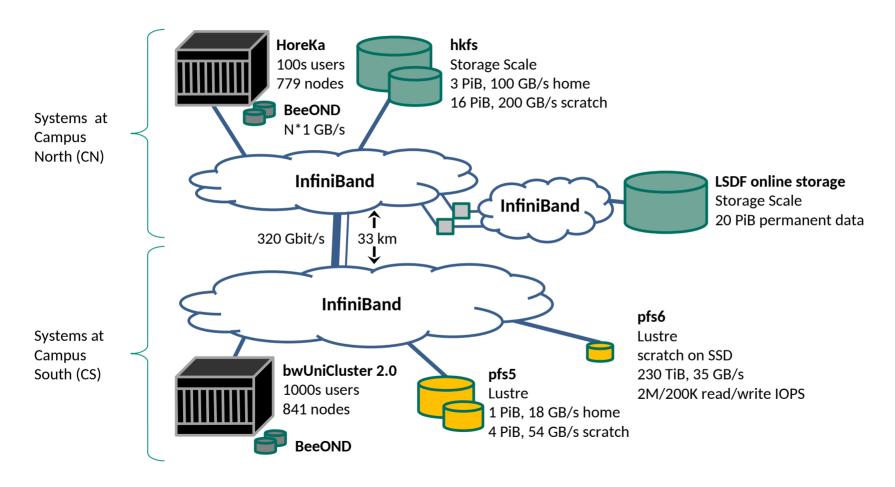


File Systems

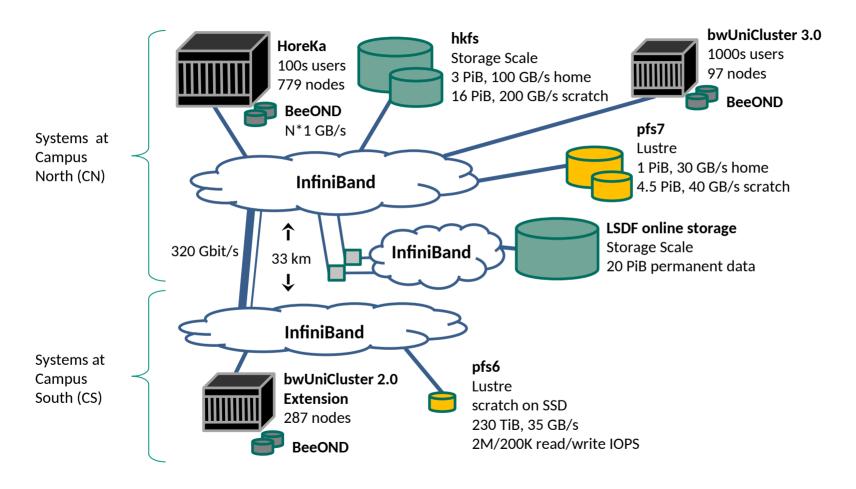
Begatim Bytyqi KIT, SCC

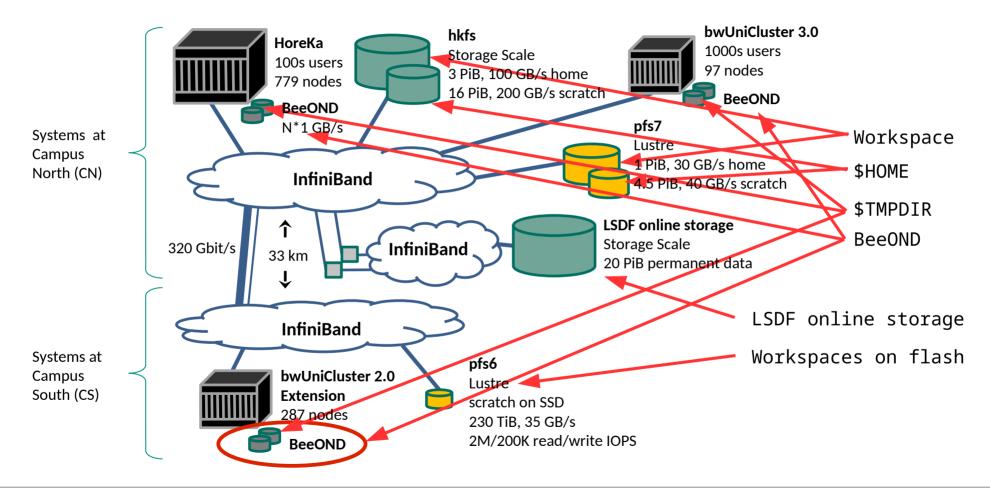

Parallel file systems

Most important parallel file systems


- Lustre
 - Used on most of the largest HPC systems
- IBM Storage Scale (aka GPFS)
 - Used in industry and on many HPC systems
- BeeGFS
 - Underlying file system for BeeGFS On Demand (BeeOND)

Lustre, GPFS, BeeGFS


- Follow POSIX standard, i.e. applications just work, and provide same view from all nodes
- Offer large capacity and parallel access from many nodes
- Good performance for huge files and access with large chunks
- Dislike small files, random I/O, or many metadata (open, close, stat, create, remove) operations
 - Hence for some applications I/O on laptop with SSD might be faster
 - Reasons: communication over network, locking to guarantee consistency


HPC clusters and file systems @ KIT with bwUniCluster 2.0

HPC clusters and file systems @ KIT with bwUniCluster 3.0

Names and locations of HPC clusters file systems @ KIT

File System properties overview

Property	\$HOME	Workspace	\$TMPDIR	BeeOND1	LSDF1	WS on flash ¹
Visibility	+++	+++	+	++	+++	+++
Lifetime	+++	++	+	+	+++	++
Capacity	+	+++	+	++	++	+
Seq. perf.	++	+++	+	+++	++	+++
Random perf.	+	+	+++	++	+	++
Impact on other users	+++	++	+	+	+++	++
Backup	+	-	-	-	+	-

¹ Only available on bwUniCluster 3.0 and HoreKa

File System detailed properties of bw clusters and of HoreKa

Property	\$HOME	Workspace	\$TMPDIR	BeeOND1	LSDF1	WS on flash ¹
Visibility	all nodes	all nodes	local node	job nodes	login + job	all nodes
Lifetime	permanent	few weeks	job runtime	job runtime	permanent	few weeks
Usable capacity	40 GB - 10 TB	10 TB - 250 TB	128 GB - 7 TB	N * 750 GB	per project	1 TB
Usable inodes	2 mil - unlimited	1 mil - unlimited	unlimited	unlimited	per project	5 mil
Backup	yes, except Helix	no	no	no	yes	no
Total perf.	medium, 100s - 1000s MB/s	huge, 10s GB/s	100s MB/s per node	N * 100s MB/s	10s GB/s	huge, 10s GB/s

¹ Only available on bwUniCluster 3.0 and HoreKa

File system on each node using local disks (\$TMPDIR)

Node local storage on SSDs

- Usage with environment variable \$TMPDIR
 - On JUSTUS 2 \$TMPDIR is file system in main memory and \$SCRATCH is on local SSD
- Separate private directory on each node of a batch job, created at job start and destroyed at job end
 - Make sure you have copied your data back to a workspace or \$HOME within your job
- HowTo:
 - → https://wiki.bwhpc.de/e/BwUniCluster3.0/Hardware_and_Architecture#\$TMPDIR

Usage example

Outside batch job create archive with compressed input dataset on a workspace:

```
$ tar -cvzf $(ws_find data-ssd)/dataset.tgz dataset/
```

In batch script extract compressed input dataset to local SSD:

```
tar -C $TMPDIR/ -xvzf $(ws_find data-ssd)/dataset.tgz
```

In batch script application reads data from dataset on SSD and writes results to SSD:

```
myapp -input $TMPDIR/dataset/myinput.csv -outputdir $TMPDIR/results
```

In batch script save results to a workspace:

```
rsync -av $TMPDIR/results $(ws_find data-ssd)/results-${SLURM_JOB_ID}/
```


BeeOND = Private file system for batch job

BeeOND (BeeGFS On-Demand)

- Available only on bwUniCluster 3.0 and on HoreKa
- Private file system for batch job, created at job start and destroyed at job end
 - Make sure you have copied your data back to a workspace or \$HOME within your job
- Parallel file system, visible on nodes allocated to a batch job
- Uses local disks (SSDs) of each node to store the data
 - Capacity is limited: 750 GB * number of nodes used in batch job
- Request creation in job script or on command line:

```
#SBATCH --constraint=BEEOND
```

```
$ sbatch -C BEEOND ...
```

Use path below /mnt/odfs/\${SLURM_JOB_ID} to access BeeOND, e.g.

```
$ cd /mnt/odfs/${SLURM_JOB_ID}/stripe_default
```

- HowTo:
 - → https://wiki.bwhpc.de/e/BwUniCluster3.0/Hardware_and_Architecture#BeeOND_(BeeGFS_On-Demand)

LSDF Online Storage = External storage for special users

LSDF Online Storage

- Available only on bwUniCluster 3.0 and on HoreKa for special users
 - intended usage for scientific measurement data and data-intensive scientific simulation results
 - → https://www.scc.kit.edu/en/services/11228.php
- Visible on login nodes and on batch job nodes if access was requested
 - Access from external with different protocols is also possible
- Request access in job script or on command line:

```
#SBATCH --constraint=LSDF
```

Use environment variables \$LSDF, \$LSDFPROJECTS, \$LSDFHOME to access, e.g.

```
$ cd ${LSDF}
```

- HowTo:
 - → https://wiki.bwhpc.de/e/BwUniCluster3.0/Hardware_and_Architecture#LSDF_Online_Storage

Workspaces on flash storage

Workspaces on flash storage

- Available only on bwUniCluster 3.0 and on HoreKa for KIT users and HoreKa users
 - File system is visible on all nodes of both clusters
 - All storage devices are based on flash (no hard disks)
 - → low access times and higher IOPS rates
 - → use this file system with queue cpu_il (Ice Lake nodes) on bwUniCluster 3.0

 Note: Long network distance and high latency from these nodes to normal workspace file system
- Use via workspace commands
 - Add switch -F ffuc on bwUniCluster 3.0 and -F ffhk on HoreKa
 - Path to each workspace is visible and can be used on both clusters
- Show quota usage and limits:
 - \$ lfs quota -uh \$(whoami) /pfs/work8
- HowTo:
 - → https://wiki.bwhpc.de/e/BwUniCluster3.0/Hardware_and_Architecture/Filesystem_Details#Workspaces_on_flash_storage

Remarks for exercise

Login to bwUnicluster 3.0 or HoreKa and show list of commands for exercises:

BwUniCluster:

\$ cat /opt/bwhpc/common/workshops/2025-04-10/pfs_commands.txt

HoreKa:

\$ cat /software/all/workshop/2025-04-10/pfs_commands.txt

- Use Cut & Paste to execute the commands
 - Start with the first command to create workspace ws01

Exercise 1: Run performance tests

- Create interactive session
 - BwUniCluster:

```
$ salloc -p single --reservation=ws -n 1 -t 20 --mem=1000
```

- Sequential write throughput
 - On workspace

```
$ dd if=/dev/zero of=$(ws_find ws01)/dd_file bs=1G count=2
```

On \$TMPDIR

```
$ dd if=/dev/zero of=${TMPDIR}/$(whoami)_dd_file bs=1G count=2
```

- Random I/O (IOPS) performance
 - Define program path of fio

BwUniCluster:

\$ fio="/opt/bwhpc/common/workshops/2025-04-10/pfs_perf/fio"

On workspace

```
$ $fio --randrepeat=1 --ioengine=libaio --direct=1 --gtod_reduce=1 --name=test \
--filename=$(ws_find ws01)/fio_file --bs=4k --iodepth=64 --size=300M --readwrite=randwrite
```

On \$TMPDIR

```
$ $fio --randrepeat=1 --ioengine=libaio --direct=1 --gtod_reduce=1 --name=test \
--filename=$TMPDIR/fio_file --bs=4k --iodepth=64 --size=300M --readwrite=randwrite
```

