

Top-Yukawa-Induced Corrections to Higgs Pair Production

with A. Bhattacharya, F. Campanario, J. Chang, J. Mazzitelli, M. M. Mühlleitner, J. Ronca and M. Spira Sauro Carlotti, Institute for Theoretical Physics, KIT | Young Scientists Meeting of the CRC TRR 257, July 22, 2025

Table of Contents

- 1. Motivation
- 2. Top-Yukawa-Induced Corrections: Computation
- 3. Results
- 4. Summary and Conclusions

Table of Contents

- 1. Motivation

Motivation

The Standard Model (SM) has been tested to highest accuracy, but there are open questions that call for new physics.

There are different ways to search for new physics:

- Direct searches of new phenomema, e.g. new particles
- Indirect effects by computing observables at high precision

Figure: [Wikimedia]

Motivation 0.00

Top-Yukawa-Induced Corrections: Computation

Results

Motivation

The Standard Model (SM) has been tested to highest accuracy, but there are open questions that call for new physics.

There are different ways to search for new physics:

- Direct searches of new phenomema, e.g. new particles
- Indirect effects by computing observables at high precision

Figure: [Wikimedia]

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

After the electroweak symmetry breaking (EWSB) the Higgs potential in the SM becomes:

$$V_{\text{SM}} = \frac{1}{2} m_H^2 H^2 + \frac{1}{3!} \lambda_{HHH} H^3 + \frac{1}{4!} \lambda_{HHHH} H^4$$

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

After the electroweak symmetry breaking (EWSB) the Higgs potential in the SM becomes:

$$V_{\mathsf{SM}} = rac{1}{2} m_H^2 H^2 + rac{1}{3!} \lambda_{HHH} H^3 + rac{1}{4!} \lambda_{HHHH} H^4$$

 Measurement of the Higgs boson mass [ATLAS, CMS, 2012]

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

After the electroweak symmetry breaking (EWSB) the Higgs potential in the SM becomes:

$$V_{\mathsf{SM}} = rac{1}{2} m_H^2 H^2 + rac{1}{3!} \lambda_{HHH} H^3 + rac{1}{4!} \lambda_{HHHH} H^4$$

- Measurement of the Higgs boson mass [ATLAS, CMS, 2012]
- Test the shape of the Higgs potential

Motivation 0000

Top-Yukawa-Induced Corrections: Computation

Results

After the electroweak symmetry breaking (EWSB) the Higgs potential in the SM becomes:

$$V_{\mathsf{SM}} = rac{1}{2} m_H^2 H^2 + rac{1}{3!} \lambda_{HHH} H^3 + rac{1}{4!} \lambda_{HHHH} H^4$$

- Measurement of the Higgs boson mass [ATLAS, CMS, 2012]
- Test the shape of the Higgs potential

 $\lambda_{\it HHH}$ is accessible through the Higgs pair production via gluon fusion at hadron colliders

Motivation

Top-Yukawa-Induced Corrections: Computation

Results 00000

Evolution of Theoretical Calculations for $gg \rightarrow HH$

[] Glover, van der Bij 88; [] Dasson, Dittmaler, Spira 80; [] Shao, I., I. I., Wang I.S. [4] Gogo, Heff, Melinikov, Steinhauser 12; [5] de Florian, Mazzhelfi 13; [6] Gigo, Melinikov, Steinhauser 14; [7] Gogo, Heff 14; [8] Maltoni, Wyonidou, Zuro 14; [9] Grogo, Heff, Steinhauser 15; [10] de Florian, Mazzhelfi 13; [6] Gelgo, Melinikov, Steinhauser 14; [11] Gengo, Heff, Steinhauser, Line, Steinhauser, Line, Mazzhelfi, Mazzhelfi,

Motivation ○○○● Top-Yukawa-Induced Corrections: Computation

Results

Evolution of Theoretical Calculations for $gg \rightarrow HH$

[] Glover, van der Bij 8E; [2] Dawson, Dittmaier, Spira 98; [2] Shao, I, I, I, Wang 13; [4] Gige, Helf, Melnikov, Steinhauser 13; [5] de Florian, Mazzitelli 13; [6] Gige, Melnikov, Steinhauser 14; [7] Grigo, Helf 14; [8] Maltoni, Vyonidou, Zaro 14; [9] Gige, Helf, Steinhauser 15; [10] de Florian, Grazzini, Hange, Kallweit, Lindert, Melnikov, Marzitelli, Rathier 16; [11] Boronia, Center, Heinrich, Joses, Kermer, Steinhauser, 14; [11] Grigo, Helf 14; [8] Maltoni, Vyonidou, 17; [13] Sonie, Kattmaial 17; [16] Golber, Maier, Rash 17; [17] Bogolia, Camponario, Steinhauser, 18; [10] Grigo, Helf 14; [8] Maltoni, Vyonidou, 17; [13] Sonie, Kertmaial 17; [16] Golber, Maier, Rash 17; [17] Bogolia, Camponario, Golder, Maier, Rash 17; [17] Bogolia, C

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Table of Contents

- 1. Motivation
- 2. Top-Yukawa-Induced Corrections: Computation
- 3. Results
- 4. Summary and Conclusions

 $gg \rightarrow HH$ is a loop-induced process where we have two types of diagrams

Sizeable contributions of the EW corrections come from the top-Yukawa coupling

 $gg \rightarrow HH$ is a loop-induced process where we have two types of diagrams

Sizeable contributions of the EW corrections come from the top-Yukawa coupling

Our framework

lacksquare Gaugeless limit o presence of the Goldstone bosons

Motivation

Top-Yukawa-Induced Corrections: Computation ○●○○○

Results

 $gg \rightarrow HH$ is a loop-induced process where we have two types of diagrams

Sizeable contributions of the EW corrections come from the top-Yukawa coupling

Our framework

- lacktriangle Gaugeless limit ightarrow presence of the Goldstone bosons
- Massive top and bottom quarks, light quarks massless

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

 $gg \rightarrow HH$ is a loop-induced process where we have two types of diagrams

Sizeable contributions of the EW corrections come from the top-Yukawa coupling

Our framework

- lacktriangle Gaugeless limit o presence of the Goldstone bosons
- Massive top and bottom quarks, light quarks massless
- Only top-Yukawa-induced corrections + light quark loops

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Matrix element split into tensor structures

$$\mathcal{M}^{\mu\nu} = F_1 T_1^{\mu\nu} + F_2 T_2^{\mu\nu}$$

The cross section can be written as

$$\mathrm{d}\sigma \sim \, \mathit{Re}\left[\left(\mathit{C}_{\triangle}\mathit{F}_{1\triangle} + \mathit{F}_{1\square}\right)^*\left(\mathit{C}_{\triangle}\mathit{F}_{1\triangle} + \mathit{F}_{1\square}\right) + \mathit{F}_{2\square}^*\mathit{F}_{2\square}\right]$$

Since only virtual corrections are involved, the corrections can be added by shifting the LO terms

$$egin{aligned} \mathcal{C}_{ riangle} \mathcal{F}_{1 riangle} &
ightarrow \mathcal{C}_{ riangle} \mathcal{F}_{1 riangle} (1+\delta_1+\Delta_{HHH}) \ \mathcal{F}_{1 riangle} &
ightarrow \mathcal{F}_{1 riangle} (1+\Delta_{1 riangle}) \ \mathcal{F}_{2 riangle} &
ightarrow \mathcal{F}_{2 riangle} (1+\Delta_{2 riangle}) \end{aligned}$$

 \rightarrow Expand d σ properly to next-to-leading order (NLO)

Motivation Top-Yukawa-Induced Corrections: Computation Results

Summary and Conclusions

 $\left| \ T_1^{\mu\nu} = g^{\mu\nu} + \frac{m_H^2 \rho_1^\nu \rho_2^\mu}{\rho_T^2 \rho_1 \cdot \rho_2} - \frac{2\rho_1 \cdot \rho_3 \rho_3^\nu \rho_2^\mu}{\rho_T^2 \rho_1 \cdot \rho_2} \right|$

Matrix element split into tensor structures

$$\mathcal{M}^{\mu\nu} = F_1 T_1^{\mu\nu} + F_2 T_2^{\mu\nu}$$

The cross section can be written as

$$\mathrm{d}\sigma \sim \mathit{Re}\left[\left(\mathit{C}_{\triangle}\mathit{F}_{1\triangle}+\mathit{F}_{1\square}\right)^{*}\left(\mathit{C}_{\triangle}\mathit{F}_{1\triangle}+\mathit{F}_{1\square}\right)+\mathit{F}_{2\square}^{*}\mathit{F}_{2\square}\right]$$

Since only virtual corrections are involved, the corrections can be added by shifting the LO terms

$$\begin{array}{c} C_{\triangle}F_{1\triangle} \to C_{\triangle}F_{1\triangle}(1+\delta_1+\Delta_{\textit{HHH}}) \\ \text{Contributions computed} & F_{1\square} \to F_{1\square}\left(1+\Delta_{1\square}\right) \\ F_{2\square} \to F_{2\square}\left(1+\Delta_{2\square}\right) \end{array}$$

 \rightarrow Expand d σ properly to next-to-leading order (NLO)

Motivation Top-Yukawa-Induced Corrections: Computation $\left| \ T_1^{\mu\nu} = g^{\mu\nu} + \frac{m_H^2 \rho_1^\nu \rho_2^\mu}{\rho_T^2 \rho_1 \cdot \rho_2} - \frac{2\rho_1 \cdot \rho_3 \rho_3^\nu \rho_2^\mu}{\rho_T^2 \rho_1 \cdot \rho_2} \right|$

Summary and Conclusions Results

Relevant Diagrams

How many diagrams need to be considered?

Motivation

Top-Yukawa-Induced Corrections: Computation ○○○●○

Results

Relevant Diagrams

How many diagrams need to be considered?

Relevant Diagrams

How many diagrams need to be considered?

• Identify all the Feynman diagrams that contribute to the process for the considered correction

Motivation

Top-Yukawa-Induced Corrections: Computation ○○○○●

Results

- Identify all the Feynman diagrams that contribute to the process for the considered correction
- Apply Feynman parametrization to all the diagrams

$$\frac{1}{a_1^{\alpha_1} a_2^{\alpha_2} \dots a_n^{\alpha_n}} = \frac{\Gamma(\alpha_1 + \dots + \alpha_n)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_n)} \int_0^1 dx_1 \dots \int_0^{1-x_1 - \dots - x_{n-2}} dx_{n-1} \\
\frac{(1 - x_1 - \dots x_{n-1})^{\alpha_1 - 1} x_1^{\alpha_2 - 1} \dots x_{n-1}^{\alpha_n - 1}}{(a_1(1 - x_1 - \dots - x_{n-1}) + a_2 x_1 + \dots a_n x_{n-1})^{\sum \alpha_i}}$$

 \rightarrow up to (n-1)-dimensional integral

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

- Identify all the Feynman diagrams that contribute to the process for the considered correction
- Apply Feynman parametrization to all the diagrams
- lacktriangle Small mass regulator for the internal particles + endpoint subtraction o isolate the UV singularities

$$m^2 \rightarrow m^2 (1 - i\delta)$$

$$\int_0^1 dx \frac{f(x)}{(1-x)^{1-\epsilon}} = \frac{f(1)}{\epsilon} + \int_0^1 dx \frac{f(x) - f(1)}{1-x} + \mathcal{O}(\epsilon)$$

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

- Identify all the Feynman diagrams that contribute to the process for the considered correction
- Apply Feynman parametrization to all the diagrams
- lacktriangle Small mass regulator for the internal particles + endpoint subtraction o isolate the UV singularities
- Instability? → Integration by parts

$$\int_0^1 dx \frac{f(x)}{(a+bx)^3} = \frac{f(0)}{2a^2b} - \frac{f(1)}{2b(a+b)^2} + \int_0^1 \frac{dx}{2b} \frac{f'(x)}{(a+bx)^2}$$

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

- Identify all the Feynman diagrams that contribute to the process for the considered correction
- Apply Feynman parametrization to all the diagrams
- lacktriangle Small mass regulator for the internal particles + endpoint subtraction o isolate the UV singularities
- Instability? → Integration by parts
- lacktriangle Richardson extrapolation to do the narrow-width limit $\delta o 0$

- Identify all the Feynman diagrams that contribute to the process for the considered correction
- Apply Feynman parametrization to all the diagrams
- lacktriangle Small mass regulator for the internal particles + endpoint subtraction o isolate the UV singularities
- Instability? → Integration by parts
- lacktriangle Richardson extrapolation to do the narrow-width limit $\delta o 0$

... and if is it not enough? \rightarrow choice of a new parametrization

Table of Contents

- 3. Results

Triangle-like Corrections

- Top-Yukawa-induced corrections to M as a function of the invariant Higgs-pair mass M_{HH}
- Solid lines represent the top-Yukawa-induced corrections
- Dashed lines represent the light quark loops contributions
- Large contribution around $t\bar{t}$ threshold

Motivation 0000 Top-Yukawa-Induced Corrections: Computation

Results 00000

Box-like Corrections

- Top-Yukawa-induced corrections to σ as a function of the invariant Higgs-pair mass M_{HH}
- $\delta_{top-Yukawa}$: corrections proportional to $\Delta_{1\square}$, $\Delta_{2\square}$, normalized to σ_{LO}
- Large contributions around the $t\bar{t}$ threshold
- Few percent corrections at the high energy tail

Motivation 0000 Top-Yukawa-Induced Corrections: Computation

Results 00•00

Full Top-Yukawa-induced corrections

- Full Top-Yukawa-induced corrections to σ as a function of the invariant Higgs-pair mass M_{HH} , normalized to σ_{LO}
- Large contributions around the $t\bar{t}$ threshold and below (Δ_{HHH})

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Light Quark Loops Corrections

- Projector 1 light quark loops corrections to σ as a function of the invariant Higgs-pair mass M_{HH} , normalized to σ_{LO}
- Sizeable contributions below $M_{HH} = 400 \text{ GeV}$
- Small contributions at high energies

Motivation 0000 Top-Yukawa-Induced Corrections: Computation

Results 0000

Table of Contents

- 1. Motivation
- 2. Top-Yukawa-Induced Corrections: Computation
- 3. Results
- 4. Summary and Conclusions

Summary and Conclusions

lacktriangle We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to gg o HH production

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Summary and Conclusions

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Summary and Conclusions

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops \sim 2–4 % contribution from top-Yukawa-induced corrections in the high-energy tail

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops \sim 2–4 % contribution from top-Yukawa-induced corrections in the high-energy tail

What's next?

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Summary and Conclusions

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops \sim 2–4 % contribution from top-Yukawa-induced corrections in the high-energy tail

What's next?

• Complete the calculations and perform further cross-checks

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Summary and Conclusions

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops \sim 2–4 % contribution from top-Yukawa-induced corrections in the high-energy tail

What's next?

- Complete the calculations and perform further cross-checks
- Full EW corrections to double Higgs production

Mot	iva	ti	or
000	0		

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops \sim 2–4 % contribution from top-Yukawa-induced corrections in the high-energy tail

What's next?

- Complete the calculations and perform further cross-checks
- Full EW corrections to double Higgs production
- Investigate the residual theoretical uncertainties

Motivation

Top-Yukawa-Induced Corrections: Computation

Results

Summary and Conclusions

- We calculated the next-to-leading order top-Yukawa-induced corrections and the light quark loop induced corrections to $gg \to HH$ production
- Full symbolic dependencies on kinematical variables and masses kept
- Preliminary results suggest:

no sizeable corrections at the high-energy tail from the light quark loops \sim 2–4 % contribution from top-Yukawa-induced corrections in the high-energy tail

What's next?

- Complete the calculations and perform further cross-checks
- Full EW corrections to double Higgs production
- Investigate the residual theoretical uncertainties

Thank You for your Attention!

Motivation Top-Yukawa-Induced Corrections: Computation Results 00000 Summary and Conclusions 0000 Ooo 0000 Ooo

BACKUP

Projectors

Matrix element can be written as:

$$M^{\mu\nu} = F_1 T_1^{\mu\nu} + F_2 T_2^{\mu\nu}$$

The Form factors can be obtained via the projectors

$$\begin{split} P_{i}^{\mu\nu} T_{j,\mu\nu} = & \delta_{ij} \\ T_{1}^{\mu\nu} = & g_{\mu\nu} - \frac{p_{1}^{\nu} p_{2}^{\mu}}{p_{1} \cdot p_{2}} \\ T_{1}^{\mu\nu} = & g_{\mu\nu} + \frac{m_{H}^{2} p_{1}^{\nu} p_{2}^{\mu}}{p_{T}^{2} p_{1} \cdot p_{2}} - \frac{2p_{1} \cdot p_{3} p_{3}^{\nu} p_{2}^{\mu}}{p_{T}^{2} p_{1} \cdot p_{2}} - \frac{2p_{2} \cdot p_{3} p_{1}^{\nu} p_{3}^{\mu}}{p_{T}^{2} p_{1} \cdot p_{2}} + \frac{2p_{3}^{\nu} p_{3}^{\mu}}{p_{T}^{2}} \end{split}$$

with
$$p_T = \sqrt{\frac{tu - m_H^4}{s}}$$

Full EW cross section

Bi, Huang, Huang, Ma, Yu 24.

Integration by parts

$$\int_0^1 dx \frac{f(x)}{N^3(x)} \stackrel{1'IBP}{=} -\frac{1}{2b} \frac{f(x)}{N^2(x)} |_0^1 + \frac{1}{2b} \int_0^1 dx \frac{f'(x)}{N^2(x)} \stackrel{2'IBP}{=} \frac{1}{2b} \left[-\frac{f(x)}{N^2(x)} |_0^1 + \frac{1}{b} \left(\frac{f'(x)}{N(x)} |_0^1 + \int_0^1 dx \frac{f''(x)}{N^2(x)} \right) \right]$$

Richardson Extrapolation

Let a function $I(\epsilon)$ behave for small ϵ as:

$$I(\epsilon) = I(0) + \mathcal{O}(\epsilon)$$

If we know $I(\epsilon)$ from two different values of ϵ , we can construct the new function:

$$R_n(\epsilon,t) = \frac{t^n I(\epsilon) - I(t\epsilon)}{t^n - 1}$$

where $I(\epsilon) = I(0) + \mathcal{O}(\epsilon^{n+1})$ for small regulator.

Thus, the new extrapolation function will be:

$$R_1(\epsilon,t) = \frac{tI(\epsilon) - I(t\epsilon)}{t-1}$$

Iteratively we have:

$$R_{1}(\epsilon, t) = 2I(\epsilon) - I(2\epsilon)$$

$$R_{2}(\epsilon, t) = \frac{1}{3} \left[8I(\epsilon) - 6I(2\epsilon) + I(4\epsilon) \right]$$

$$R_{3}(\epsilon, t) = \frac{1}{21} \left[64I(\epsilon) - 56I(2\epsilon) + 14I(4\epsilon) - I(8\epsilon) \right]$$

$$\vdots$$

where t = 2.

Improve accuracy by combining approximations with different step sizes.

- Compute the approximation S_h for step size h.
- **②** Compute the approximation S_{2h} for step size 2h.
- Extrapolated solution:

$$S_{\mathsf{extr}} = \frac{2S_h - S_{2h}}{1}$$

First four polynomials of Richardson extrapolation:

$$S_h = p_0 + p_1 h + p_2 h^2 + p_3 h^3 + \cdots$$
$$S_{2h} = p_0 + p_1 (2h) + p_2 (2h)^2 + p_3 (2h)^3 + \cdots$$

Applying Richardson's method, we obtain:

$$S_{\text{extr}} = \frac{2(p_0 + p_1 h + p_2 h^2 + p_3 h^3) - (p_0 + p_1(2h) + p_2(2h)^2 + p_3(2h)^3)}{1}$$

$$\mathcal{V}(\phi) = -\mu |\phi|^2 + \frac{\lambda}{2} |\phi|^4 = -\frac{m_H^2}{8} v^2 + \frac{m_H^2}{2} H^2 + \frac{m_H^2}{v} \left[\frac{H^3}{2} + \frac{H}{2} (G^0)^2 + HG^+ G^- \right]$$

$$+ \frac{m_H^2}{2v^2} \left[\frac{H^4}{4} + \frac{H^2}{2} (G^0)^2 + H^2 G^+ G^- + (G^+ G^-)^2 + (G^0)^2 G^+ G^- + \frac{(G^0)^4}{4} \right] |\phi|^4$$

Counter Terms

$$CT_{1} = \frac{1}{2}\Sigma'_{H}(Q^{2}) = 3x_{t} \left[\left(4m_{t}^{2} - Q^{2} \right) B'_{0}(Q^{2}, m_{t}, m_{t}) - B_{0}(Q^{2}, m_{t}, m_{t}) \right]$$

$$CT_{2} = -\frac{\delta v}{v} = -\frac{1}{2}\frac{\delta m_{W}^{2}}{m_{W}^{2}} = \frac{1}{2}\frac{\Sigma_{W}(0)}{m_{W}^{2}} = \frac{T_{1}}{vm_{H}^{2}} + x_{t} \left[B_{0}(0, m_{t}, m_{b}) + 2B_{0}(0, m_{t}, m_{t}) + m_{t}^{2}B'_{0}(0, m_{t}, m_{b}) \right]$$

$$CT_{3} = -\frac{\delta m_{t}}{m_{t}} \left(\frac{m_{t}\partial}{\partial m_{t}} F_{LO}^{(n)} \right) \frac{1}{F_{LO}}$$

0000000000000

where $x_t = \frac{G_F m^2}{8\sqrt{2}\pi^2}$

Light quark diagrams

Cross section

The cross section can be decomposed as follows

$$d\sigma = d\sigma_{LO} + d\sigma_{virt}$$

$$d\sigma_{virt} \sim Re \left[\left(C_{\triangle} F_{1\triangle}^{LO} + F_{1\square}^{LO} \right)^* \left(C_{\triangle} F_{1\triangle} + F_{1\square} \right) + F_{2\square}^{LO*} F_{2\square} \right]$$

$$\delta_{top-yukawa-\triangle} \sim Re \left| \left(C_{\triangle} F_{1\triangle}^{LO} \right)^* C_{\triangle} F_{1\triangle}^{LO} \right|$$

$$\delta_{top-Yukawa} \sim \left. ext{Re} \right| \left[\left(ext{C}_{eta} ext{F}_{1igthing}^{LO} + ext{F}_{1igthing}^{LO}
ight)^* \left(ext{C}_{igthing} ext{F}_{1igthing} + ext{F}_{1igthing}
ight) + ext{F}_{2igthing}^{LO*} ext{F}_{2igthing}
ight] \left| - \delta_{top-yukawa-igthing} ext{Vector}
ight|$$

Heavy Top-quark Limit (HTL)

In the HTL, the top-Yukawa-induced electroweak corrections to the effective Hgg and HHgg couplings can be obtained as

$$\mathcal{L}_{ ext{eff}} = \mathit{C}_{1} rac{lpha_{ extsf{s}}}{12\pi} \mathit{G}^{ ext{a}\mu
u} \mathit{G}^{ ext{a}}_{\mu
u} \mathit{log} \left(1 + \mathit{C}_{2} rac{\mathit{H}}{\mathit{v}}
ight)$$

where $G_{\mu\nu}^a$ denotes the gluonic field-strength tensor, $C_1=1-3x_t+O(x_t^2)$, and $C_2=1+\frac{7}{2}x_t+O(x_t^2)$. C_1 and C_2 yield the explicit effective Hgg and HHgg couplings,

$$\mathcal{L}_{\mathit{eff}} = \mathit{C}_{1} rac{lpha_{s}}{12\pi} \mathit{G}^{\mathsf{a}\mu
u} \mathit{G}^{\mathsf{a}}_{\mu
u} \mathit{log} \left[(1+\delta_{1}) rac{\mathcal{H}}{\mathit{v}} + (1+\eta_{1}) rac{\mathcal{H}^{2}}{2\mathit{v}^{2}} + \mathit{O}(\mathit{H}^{3})
ight]$$

where

$$\delta_1 = \frac{x_t}{2} + O(x_t^2)$$

$$\eta_1 = 4x_t + O(x_t^2)$$

Counter Terms

