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Introduction

Consider the cross section for pp → X +Nj

2sdσ = fa ⊗ fb︸ ︷︷ ︸
NP

⊗ dσ̂ab −→UV and IR divergent

The partonic cross section is expanded in perturbative QCD

dσ̂ab = dσ̂LO
ab + dσ̂NLO

ab

Solved problem

+ dσ̂NNLO
ab

Open problem

+ . . .

At NLO the cross section reads

dσ̂NLO
ab = dσ̂R

ab + dσ̂V
ab + dσ̂pdf

ab

KLN−→ dσ̂NLO,fin
ab

GOAL: A general process-independent formula for the finite NNLO contribution.
The state of the art is pp → 3j at NNLO [Czakon ’22].
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Implicit and explicit poles

Poles can be implicit and explicit

dσ̂NLO
ab =

Implicit poles in 1/ϵ︷︸︸︷
dσ̂R

ab +dσ̂V
ab + dσ̂pdf

ab︸ ︷︷ ︸
Explicit poles in 1/ϵ

From collinear renormalization of the PDFs one gets

dσ̂pdf
ab =

αs

2π

1

ϵ

∑
x

[
P̂ (0)
xa ⊗ dσ̂LO

xb + dσ̂LO
ax ⊗ P̂

(0)
xb

]
The virtual contribution is

dσ̂V
ab =

αs

2π

1

2

eϵγE

Γ(1− ϵ)

∑
i,j
i ̸=j

[
1

ϵ2
+

γi

ϵT 2
i

]
T i · T j

(
µ2

2pi · pj

)ϵ
eiπλijϵdσ̂LO

ab + dσ̂V,fin
ab
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Emergence of infrared poles

Infrared singularities appear because massless propagators diverge when particles become soft
(E → 0) and/or collinear (θij → 0)

∣∣M(0)({p}, k)
∣∣2 k → 0−→

∑
i,j

pi · pj
(pi · k)(pj · k)︸ ︷︷ ︸

Singular when Ek → 0 and θik,θjk → 0

×T i · T j

Independent of singularities︷ ︸︸ ︷∣∣M(0)({p})
∣∣2

The infrared behaviour of QCD amplitudes is universal and factorizes [Catani ’98; Catani,Grazzini
’99, ’00].

• Divergences from phase-space integration∫ Emax

0

dEk
Ed−3

k

E2
k

∼ 1

d− 4
∼ 1

ϵ

• T i · T j is process dependent

QUESTION: How can this knowledge be used to extract and cancel the infrared poles?
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Subtraction schemes are an answer

The poles of the real contribution need to become explicit to observe local cancellation of the IR
poles ∫

dΦN+1dσ̂
R
ab =

∫
dΦN+1dσ̂ab→X+(N+1)j −→

∫
dΦN

[c−2

ϵ2
+

c−1

ϵ1

]
dσ̂LO

ab +O(ϵ0)

The real contribution is regulated by subtracting the divergent parts locally∫
dΦN+1dσ̂

R
ab =

∫
dΦN+1S[dσ̂

R
ab]︸ ︷︷ ︸

Soft singularities ∼ 1/ϵ2

+

∫
dΦN+1(1− S)dσ̂R

ab︸ ︷︷ ︸
Soft regulated

=

∫
dΦN+1S[dσ̂

R
ab] +

∫
dΦN+1(1− S)C[dσ̂R

ab]︸ ︷︷ ︸
Hard collinear singularities ∼ 1/ϵ

+

∫
dΦN+1(1− C)(1− S)dσ̂R

ab︸ ︷︷ ︸
Integrable

REMARK: At NLO the problem was solved 30 years ago [Frixione,Kunszt,Signer ’95;
Catani,Seymour ’96]. An answer is still elusive at NNLO.
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The Nested Soft-Collinear subtraction scheme at NLO

Let the cross section be

dσ̂LO
ab =

〈
F ab
LM

〉
= N

∫
dΦ (2π)dδ(d)({p}) |M({p})|2 O({p})

and

dσ̂R
ab =

〈
F ab
LM,R

〉
Introduce partitions of unity ∆(m) to select unresolved partons and angular partitions ωmi to
separate collinear singularities. Then, extract soft and collinear singularities sequentially to get〈

F ab
LM,R

〉
=

∑
m

〈
∆(m)F ab

LM,R

〉
=

∑
m

[〈
Sm∆

(m)F ab
LM,R

〉
+
∑
i

〈
SmCimω

mi∆(m)F ab
LM,R

〉
+
〈
O(m)

NLO∆
(m)F ab

LM,R

〉]
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Overview of pole cancellation at NLO (I)

• Soft term ∑
m

〈
Sm∆

(m)F ab
LM,R

〉
=

〈
IS(ϵ) · F ab

LM

〉
−→ IS(ϵ) ∼ − 1

ϵ2

∑
i,j
i̸=j

T i · T j

• Collinear term∑
m

∑
i

〈
SmCimω

mi∆(m)F ab
LM,R

〉
=

〈
IC(ϵ) · F ab

LM

〉
−→ IC(ϵ) ∼

∑
i

1

ϵ
γi

REMARK: The collinear anomalous dimensions γi do not appear automatically.

• Partitions separate collinear contributions to aid the individual calculations

• Terms have to be recombined to reconstruct γi
• Physically meaningful structures are obscured by partitions

• The virtual term is partition-free
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Overview of pole cancellation at NLO (II)

The virtual term reads

dσ̂V
ab =

〈
F ab
LV

〉
=

〈
IV(ϵ) · F ab

LM

〉
+
〈
F ab
LV,fin

〉
where

IV(ϵ) ∼
1

ϵ2

∑
i,j
i ̸=j

T i · T j −
∑
i

1

ϵ
γi

Combine everything together

IT(ϵ) = IS(ϵ) + IC(ϵ) + IV(ϵ) = O
(
ϵ0
)

• Poles T i · T j proportional to are cancelled in full generality

• IT(ϵ) is process-independent

• PDFs terms cancel too

3. The Nested Soft-Collinear subtraction scheme at NLO 3.0. 9/18



The Nested Soft-Collinear subtraction scheme at NNLO

The NNLO cross section is

dσ̂NNLO
ab = dσ̂RR

ab + dσ̂RV
ab + dσ̂VV

ab + dσ̂pdf
ab

• The double-virtual and PDFs terms are well-understood

• The real-virtual term is roughly NLO-like

• The double-real term is challenging

Extract the soft singularities first

dσ̂RR
ab =

〈
F ab
LM,RR

〉
=

∑
m,n

[〈
Smn∆

(mn)ΘmnF
ab
LM,RR

〉
+
〈
SmnSn∆

(mn)ΘmnF
ab
LM,RR

〉
+

〈
SmnSn∆

(mn)ΘmnF
ab
LM,RR

〉 ]
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The double-real term is challenging (I)

Next, extract the collinear singularities〈
F ab
LM,RR

〉
=

∑
m,n

[〈
Smn∆

(mn)ΘmnF
ab
LM,RR

〉
+
∑
i

〈
SmCimω

miSn∆
(mn)ΘmnF

ab
LM,RR

〉
+
〈
O(m)

NLOSn∆
(mn)ΘmnF

ab
LM,RR

〉
+

4∑
i=1

〈
SmnSnΩi∆

(mn)ΘmnF
ab
LM,RR

〉 ]
The collinear subtractions Ωi are complicated. This method can be applied to any process, but
poles have to calculated and cancelled one process at a time [Melnikov, et al. ’17,’19,’20].

GOAL: A general calculation of the poles of this term that is valid for any process.
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The double-real term is challenging (II)

There are many complications associated with two unresolved particles.

• Double-soft and triple-collinear terms are difficult to calculate [Melnikov, et al. ’18,’19]

• Double-collinear and triple-collinear singularities overlap → angular partitions ωmi,nj do not
separate all singularities

• Phase-space decomposed in sectors to disentangle collinear singularities [Czakon ’10]

• Quartic and triple color-correlations: (T i · T j)(T k · T l) and fabcT
a
i T

b
jT

c
k

REMARK 1: The reorganization of the NNLO infrared structure is much more complicated.
Issues addressed in two recent papers [Melnikov, et al. ’23; Melnikov, MT, et al. ’25]:

• Case study qq̄ → X +Ng: Color-correlated terms reorganized and cancelled in generality

• Case study gq → X +Ng + q: Recombination of the collinear terms understood in general

REMARK 2: It is still challenging to achieve complete generality.

QUESTION: Where do the complications lie?
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Parametrizing all processes

There are two main complications

• The cancellation of collinear singularities involves all partonic channels at once

• Bookkeeping is a huge issue: enumerate and parametrize all possible partonic channels that
contribute to an arbitrary process

Focus on nf = 1 QCD and X = Z. All channels are parametrized by the baryonic charge

QB ≥ 0 : BQB
N,n =

(
{g}N−QB−2n, {q}n+QB , {q̄}n

)
,

QB < 0 : BQB
N,n =

(
{g}N−|QB|−2n, {q}n, {q̄}n+|QB|

)
,

n ∈

[
0,

⌊
N − |QB|

2

⌋]
The leading order cross section reads

dσ̂LO
ab =

〈
F ab
LM

〉
=

∑
n

〈
F ab
LM[BQab

N,n]
〉

REMARK: Soft and collinear singularities can now be calculated all at once.

5. Extension to an arbitrary process 5.0. 13/18



General NLO formulas

At NLO it is straightforward to calculate the real contribution

dσ̂R
ab =

∑
n

{〈
O(m)

NLO∆
(m)

[
F ab
LM[BQab

N,n|mg] + F ab
LM[BQab−1

N,n |mq] + F ab
LM[BQab+1

N,n |mq̄]
]〉

+
αs

2π

[〈[
IS(ϵ) + IC(ϵ)

]
· F ab

LM[BQab

N,n]
〉
+

1

ϵ

∑
x

〈
Pgen
xa ⊗ F xb

LM[BQxb

N,n] + F ax
LM[BQax

N,n ]⊗ Pgen
xb

〉]}
All poles are now known in full generality and the finite remainder can be obtained

dσ̂NLO
ab =

〈
F ab
LV,fin[B

Qab

N,n]
〉

+
∑
n

{〈
O(m)

NLO∆
(m)

[
F ab
LM[BQab

N,n|mg] + F ab
LM[BQab−1

N,n |mq] + F ab
LM[BQab+1

N,n |mq̄]
]〉

+
αs

2π

[〈
I
(0)
T · F ab

LM[BQab

N,n]
〉
+
∑
x

〈
PNLO
xa ⊗ F xb

LM[BQxb

N,n] + F ax
LM[BQax

N,n ]⊗ PNLO
xb

〉]}
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General NNLO formulas (I)

The NNLO result is much more complicated

dσ̂NNLO
ab = dσ̂FR

ab + dσ̂SU
ab + dσ̂DU

ab

• Fully-regulated: two regulated unresolved particles →
〈
SmnSnΩ1∆

(mn)ΘmnF
ab
LM,RR

〉
• Single-unresolved: one regulated unresolved particles →

〈
O(m)

NLO∆
(m)F ab

LM,R

〉
• Double-unresolved: no regulated unresolved particles →

〈
F ab
LM

〉
Focus on the double-unresolved term

dσ̂DU
ab = dσ̂DU,db

ab + dσ̂DU,sb,a
ab + dσ̂DU,sb,b

ab + dσ̂DU,el
ab .

• Double-boosted contribution

dσ̂DU,db
ab =

(αs

2π

)2 ∑
n

∑
x,y

〈
PNLO
xa ⊗ F xy

LM[BQxy

N,n ]⊗ PNLO
yb

〉
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General NNLO formulas (II)

• Single-boosted contribution

dσ̂DU,sb,a
ab =

∑
n

∑
x

{(αs

2π

)2 [〈
PNNLO
xa ⊗ F xb

LM[BQxb

N,n]
〉
+
〈
PNLO
xa ⊗

[
I
(0)
T · F xb

LM[BQxb

N,n]
]〉

+δxa
〈
PW
aa ⊗

[
Wa∥n,fin

a · F ab
LM[BQab

N,n]
]〉]

+
αs

2π

〈
PNLO
xa ⊗ F xb

LV,fin[B
Qxb

N,n]
〉}

• Elastic contribution

dσ̂DU,el
ab =

∑
n

{(αs

2π

)2 〈[
Ifincc + Ifinss + Ifintri + Ifinunc

]
· F ab

LM[BQab

N,n]
〉

+
(αs

2π

)2 ∑
i∈H

〈[
θHf

γW
z,fi→fig W

i∥n,fin
i + δ(0)Wm∥n,fin

i + δ⊥,(0)W(i)
r

]
· F ab

LM[BQab

N,n]
〉

+
αs

2π

〈
I
(0)
T · F ab

LV,fin[B
Qab

N,n]
〉
+
〈
F ab
LV2,fin[B

Qab

N,n]
〉
+
〈
F ab
LVV,fin[B

Qab

N,n]
〉}
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Conclusions and outlooks

To summarize

• A general NNLO infrared regularization is a very challenging open problem

• I presented a solution for nf = 1 massless QCD

• Already extended to massless QCD for arbitrary nf and X = Z,W±

Looking at the near future I see

• Extension to more complicated color-singlets, e.g. X = W+W+

• A general numerical implementation

• Application to Higgs boson production in weak boson fusion with an extra jet
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Thank you!
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