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Aim:
Compute the quark mass effects of following gradient flow quantities to
the three-loop level

o S(1) = (x(t)x ()>

° R( ) = (x() B (),
B(t) = 1(Gu (£) G (1)).

Motivation:
Mass effects of S(¢) and R(t) can be used to supplement lattice data in
precision determination of quark masses. [Takaura, Harlander & Lange 2025].



o New flowed fields depend on a flowtime, t, e.g. for fermions
ox = DﬁDix — kOB, Tx.

e Ensure correct physics on boundary x(¢t = 0,z) = ¢ ().
o Uses: scale-setting, smearing, lattice-matching.

o Perturbation theory: new Feynman rules, e.g.

> TIPEM (g
Y. t) x(-ps) T 2 2 (4o,




_ —
Operator: Ry(t) = (xs(t) D x5 (1))
Operator Feynman rules:

The vacuum expectation value (vev) is calculated with

R(t) = +




Flowed operators

—
Operator: Rs(t) = (xs(t) D xs(t))
Operator Feynman rules:

The vacuum expectation value (vev) is calculated with

0 lfo 7]

2N, 2m2tN,
= —(47”32 + (Zlﬂt); (1 - 2m2t62m2tf(0,2m2t)) + O(a).

O()

where I'(s, z) is the incomplete I'-function.
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Approximations to full mass expansion
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Graph from [Takaura, Harlander & Lange 2024]

Closed form solutions for massive contributions not known at the
two-loop level. Employ simplifications:

e Small mass expansion, i.e. expand in m?t.

e Large mass expansion, i.e. expand in 1/m?t.

o Solve numerically for a set of values m?t.
[Takaura, Harlander & Lange 2025
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Calculational setup:

o Choose an operator and calculate its Feynman rule: frules
[Harlander & Geuskens (unpublished)].

o Consider diagrams contributing to the process and calculate their
expansion in terms of gradient flow vacuum bubbles: qgraf,
tapir, exp and form.

[Nogueira 1991; Gerlach, Herren, Lang 2022; Harlander, Seidensticker, Steinhauser
1998; Seidensticker 1999; Vermaseren 1989].

o Numerically evaluate the integrals for each flow time: ftint
[Harlander, Nellopoulos, Olsson & Wesle 2025].
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log(m?t)

Components of S(t), R(t) and E(t) for 200 points in range of m?¢

LS(t) = Lx(x(®) = siyzu(m*t)a’L), NF

where Ly = In(2u%t) + vE.
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Measurable Ratios

Motivation: N

Mass effects of S(¢) = (x(¢)x(t)) and R(t) = (xs(t) D xs(t)) can be
used to supplement lattice data in precision determination of quark
masses.

[Takaura, Harlander & Lange 2025].

Renormalization:
In the gradient flow fields have multiplicative renormalization

X = ZxXO, X = Z)&_(Oa
By =\/ZpBo,, Zy° =1,

but composite operators don’t require additional renormalisation.
Therefore

S(t) = Z,So(t) and R(t) = Z,Ro(t).
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Measurable Ratios

Define "measurable" quantities

B0 S
“D=%0 T Ry
mt) = B8 Ry and () = m-ra(h),

dm

@ Bare quark masses can be calculated on the lattice by comparing
lattice computations to experiment for e.g. some pion mass.

@ These bare quark masses can be renormalized in the continuum
directly by calculating one of these ratios, e.g.

mgr = Z(Ta)mB
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<<<<< LO  ==- NLO —— NNLO
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Running with RunDec: [K.G. Chetyrkin, J.H. Kithn, M. Steinhauser 2020, Navas et.
al 2025

my(mp) = 4.183GeV, m.(m.) = 1.273GeV,

1
M= Kflint = KA/ 57075 + m2.
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1, plotted across a range of k = p/pung for fixed values of ¢: 0.1GeV~2 with

m = my(p) (r(t) = (S/R))




Conclusions

We have computed the quark mass effects numerically of the following
gradient flow quantities to the three-loop level

S(0) = (X)),

R(t) = (x (t) P x(1)),
B(t) = 3{Gu (1) G (1)).

along with measurable ratios.

Outlook:

e Have numerical evaluations of r, = S/R, 1, = R/ R|m=o.

@ Both should be comparable to lattice predictions of these
quantities.

o r. = m% r, less sensitive to non-perturbative effects.

e Numerical differentiation introduces additional uncertainty.

@ Precision analysis may require differentiation on integral level -
evaluating new three-loop integrals.

Robert Mason Quark mass effects 13 /14



Conclusions

Outlook:
e Have numerical evaluations of r, = S/R, 1, = R/ R|m=o.
@ Both should be comparable to lattice predictions of these
quantities.
o r. = m% r, less sensitive to non-perturbative effects.
@ Numerical differentiation introduces additional
e Precision analysis may require differentiation on integral level -
evaluating new three-loop integrals.
Any questions?
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Plot of K[S(t)] = S(t)/S(t)|Lo for Ny = 5 with massive bottom and charm
quarks in range 0 < ¢ < 0.5GeV ™2 (S(t) = (x;(t)xs(1))).
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7y plotted across a range of kK = p/ i for fixed values of t: 0.1GeV~2 with
m = my(p) (ro(t) = (R/R|m=0))
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7. plotted across a range of kK = /i for fixed values of t: 0.4GeV 2 with
m = my(p) (ro(t) = mg% (S/R))
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rp plotted against ¢ in GeV ™2 N; = 4 (right) and Ny = 5 (left) with LO, NLO
and NNLO plotted with an envelope error formed by scale variation.
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r, plotted against ¢ in GeV ™2 Ny = 4 (right) and Ny = 5 (left) with LO, NLO
and NNLO plotted with an envelope error formed by scale variation.



