Quark mass effects in gradient flow observables

Robert Mason mason@physik.rwth-aachen.de

RWTH Aachen University

with R. V. Harlander

Mass corrections

Aim:

Compute the quark mass effects of following gradient flow quantities to the three-loop level

- $S(t) = \langle \bar{\chi}(t)\chi(t)\rangle$,
- $R(t) = \langle \bar{\chi}(t) \overleftrightarrow{D} \chi(t) \rangle$,
- $E(t) = \frac{1}{4} \langle G_{\mu\nu}(t) G^{\mu\nu}(t) \rangle$.

Motivation:

Mass effects of S(t) and R(t) can be used to supplement lattice data in precision determination of quark masses. [Takaura, Harlander & Lange 2025].

Gradient flow

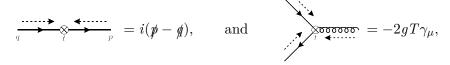
 \bullet New flowed fields depend on a flowtime, t, e.g. for fermions

$$\partial_t \chi = \mathcal{D}^F_{\mu} \mathcal{D}^F_{\mu} \chi - \kappa \partial_{\mu} B^a_{\mu} T^a \chi.$$

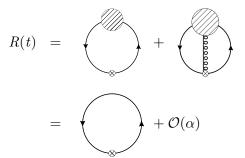
- Ensure correct physics on boundary $\chi(t=0,x)=\psi(x)$.
- Uses: scale-setting, smearing, lattice-matching.
- Perturbation theory: new Feynman rules, e.g.

Flowed operators

Operator Feynman rules:



The vacuum expectation value (vev) is calculated with

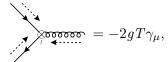


Flowed operators

Operator: $R_f(t) = \langle \bar{\chi}_f(t) \not \!\!\!\!\! D \rangle \chi_f(t) \rangle$

Operator Feynman rules:

$$\stackrel{\longrightarrow}{\underset{q}{\longrightarrow}} \otimes \stackrel{\longleftarrow}{\underset{l}{\longrightarrow}} = i(\not p - \not q), \quad \text{and} \quad \stackrel{\longrightarrow}{\longrightarrow}$$

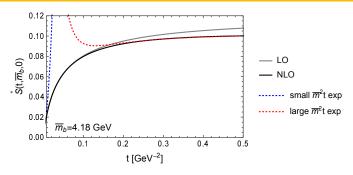


The vacuum expectation value (vev) is calculated with

$$\begin{split} R(t) &= -2\frac{N_c}{(4\pi t)^2} \left[\int_p e^{-2tp^2} - m^2 \int_p \frac{e^{-2tp^2}}{p^2 + m^2} \right] + \mathcal{O}(\alpha) \\ &= -\frac{2N_c}{(4\pi t)^2} + \frac{2m^2tN_c}{(4\pi t)^2} \left(1 - 2m^2te^{2m^2t}\Gamma(0, 2m^2t) \right) + \mathcal{O}(\alpha). \end{split}$$

where $\Gamma(s, x)$ is the incomplete Γ -function.

Approximations to full mass expansion



Graph from [Takaura, Harlander & Lange 2024]

Closed form solutions for massive contributions not known at the two-loop level. Employ simplifications:

- Small mass expansion, i.e. expand in m^2t .
- Large mass expansion, i.e. expand in $1/m^2t$.
- Solve numerically for a set of values $m_i^2 t$.

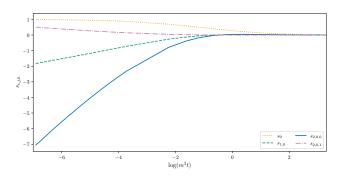
[Takaura, Harlander & Lange 2025]

Outline of calculations

Calculational setup:

- Choose an operator and calculate its Feynman rule: frules [Harlander & Geuskens (unpublished)].
- Consider diagrams contributing to the process and calculate their expansion in terms of gradient flow vacuum bubbles: qgraf, tapir, exp and form.
 - [Nogueira 1991; Gerlach, Herren, Lang 2022; Harlander, Seidensticker, Steinhauser 1998; Seidensticker 1999; Vermaseren 1989].
- Numerically evaluate the integrals for each flow time: ftint [Harlander, Nellopoulos, Olsson & Wesle 2025].

$S_{i,j,k}$



Components of S(t), R(t) and E(t) for 200 points in range of m^2t

$$\frac{t}{m}S(t) = \frac{t}{m}\langle \bar{\chi}(t)\chi(t)\rangle = s_{i,j,k}(m^2t)\alpha^i L^j_{\mu t} N^k_l$$

where $L_{mut} = \ln(2\mu^2 t) + \gamma_E$.

Robert Mason

Measurable Ratios

Motivation:

Mass effects of $S(t) = \langle \bar{\chi}(t)\chi(t) \rangle$ and $R(t) = \langle \bar{\chi}_f(t) \not \!\!\!\! D \chi_f(t) \rangle$ can be used to supplement lattice data in precision determination of quark masses.

[Takaura, Harlander & Lange 2025].

Renormalization:

In the gradient flow fields have multiplicative renormalization

$$\begin{split} \chi &= \sqrt{Z_\chi} \chi_0, \quad \bar{\chi} = \sqrt{Z_\chi} \bar{\chi}_0, \\ B_\mu &= \sqrt{Z_B} B_{0\mu}, \quad Z_B^{\overline{\rm MS}} = 1, \end{split}$$

but composite operators don't require additional renormalisation. Therefore

$$\mathring{S}(t) = \mathring{Z}_{\chi} S_0(t)$$
 and $\mathring{R}(t) = \mathring{Z}_{\chi} R_0(t)$.

Measurable Ratios

Define "measurable" quantities

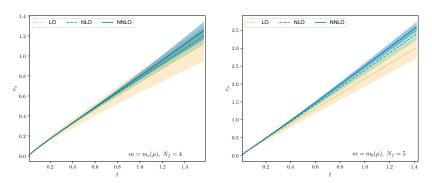
$$r_a(t) = \frac{\mathring{S}(t)}{\mathring{R}(t)} = \frac{S_0(t)}{R_0(t)},$$

$$r_b(t) = \frac{R(t)}{R(t)|_{m=0}} \propto \mathring{R}(t)$$
 and $r_c(t) = m \frac{d}{dm} r_a(t)$,

- Bare quark masses can be calculated on the lattice by comparing lattice computations to experiment for e.g. some pion mass.
- These bare quark masses can be renormalized in the continuum directly by calculating one of these ratios, e.g.

$$m_R = z(r_a)m_B$$

r_a scale variation

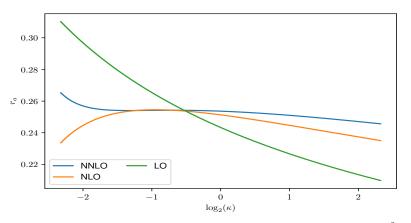


Running with RunDec: [K.G. Chetyrkin, J.H. Kühn, M. Steinhauser 2020, Navas et. al 2025]

$$m_b(m_b) = 4.183 \text{GeV}, \quad m_c(m_c) = 1.273 \text{GeV},$$

 $\mu = \kappa \mu_{\text{int}} = \kappa \sqrt{\frac{1}{2te^{\gamma_E}} + m^2}.$

r_a scale variation



 r_a plotted across a range of $\kappa = \mu/\mu_{\rm int}$ for fixed values of t: 0.1GeV⁻² with $m = m_b(\mu) \ (r_b(t) = (S/R))$

Conclusions

We have computed the quark mass effects numerically of the following gradient flow quantities to the three-loop level

- $S(t) = \langle \bar{\chi}(t) \chi(t) \rangle$, $R(t) = \langle \bar{\chi}(t) \not \!\!\! D \chi(t) \rangle$,
- $E(t) = \frac{1}{4} \langle G_{\mu\nu}(t) G^{\mu\nu}(t) \rangle$.

along with measurable ratios.

Outlook:

- Have numerical evaluations of $r_a = S/R$, $r_b = R/R|_{m=0}$.
- Both should be comparable to lattice predictions of these quantities.
- $r_c = m \frac{d}{dm} r_a$ less sensitive to non-perturbative effects.
- Numerical differentiation introduces additional uncertainty.
- Precision analysis may require differentiation on integral level evaluating new three-loop integrals.

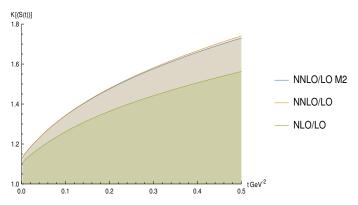
Conclusions

Outlook:

- Have numerical evaluations of $r_a = S/R$, $r_b = R/R|_{m=0}$.
- Both should be comparable to lattice predictions of these quantities.
- $r_c = m \frac{d}{dm} r_a$ less sensitive to non-perturbative effects.
- Numerical differentiation introduces additional
- Precision analysis may require differentiation on integral level evaluating new three-loop integrals.

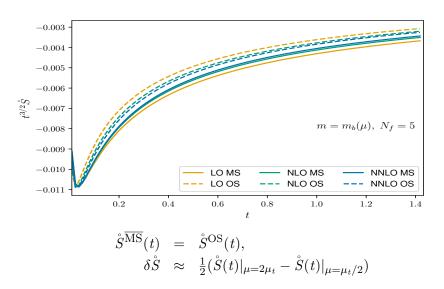
Any questions?

Backup: Second quark mass

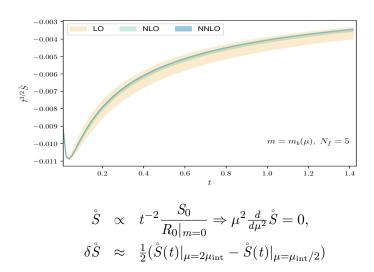


Plot of $K[S(t)] = S(t)/S(t)|_{\text{LO}}$ for $N_f = 5$ with massive bottom and charm quarks in range $0 < t < 0.5 \text{GeV}^{-2}$ $(S_f(t) = \langle \bar{\chi}_f(t) \chi_f(t) \rangle)$.

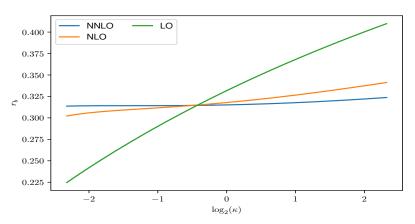
Backup: Uncertainty in S(t)



Backup: Uncertainty in S(t)

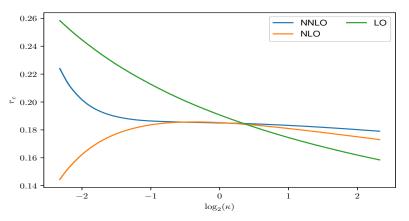


Backup: r_b scale variation



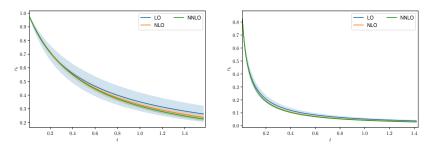
 r_b plotted across a range of $\kappa = \mu/\mu_{\rm int}$ for fixed values of t: 0.1GeV⁻² with $m = m_b(\mu) \ (r_b(t) = (R/R|_{m=0}))$

Backup: r_c scale variation



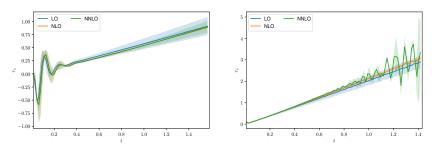
 r_c plotted across a range of $\kappa = \mu/\mu_{\rm int}$ for fixed values of t: 0.4GeV⁻² with $m = m_b(\mu) \ (r_c(t) = m \frac{d}{dm}(S/R))$

Backup - r_b



 r_b plotted against t in GeV⁻² $N_f = 4$ (right) and $N_f = 5$ (left) with LO, NLO and NNLO plotted with an envelope error formed by scale variation.

Backup - r_c



 r_a plotted against t in GeV⁻² $N_f = 4$ (right) and $N_f = 5$ (left) with LO, NLO and NNLO plotted with an envelope error formed by scale variation.