

Picking the right setup for anomaly detection

Marie Hein

with Gregor Kasieczka, Michael Krämer, Louis Moureaux, Alexander Mück, Tobias Quadfasel and David Shih

CRC Young Scientists Meeting 2025

Anomaly Detection

Anomaly Detection

Classification Problem

Optimal classifier

$$R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$$

Classification Problem

Optimal classifier

$$R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$$

For Machine Learning use binary cross entropy loss

$$BCE = -\log p_{\text{pred, true}}$$

Classification Problem

Optimal classifier

$$R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$$

For Machine Learning use binary cross entropy loss

$$BCE = -\log p_{\text{pred, true}}$$

 \rightarrow Optimal solution function monotonically related to $R_{
m optimal}$

$$f(x) = \frac{p_S(x)}{p_B(x) + p_S(x)}$$

→ Same decision boundaries

Weakly Supervised Classification

"Classification without labels: Learning from mixed samples in high energy physics" [1709.02949], E. Metodiev, B. Nachman, J. Thaler

Optimal classifier

$$R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$$

• For mixed datasets with signal fractions f_i

$$R_{\text{mixed}}(x) = \frac{f_1 R_{\text{optimal}}(x) + (1 - f_1)}{f_2 R_{\text{optimal}}(x) + (1 - f_2)}$$

Weakly Supervised Classification

"Classification without labels: Learning from mixed samples in high energy physics" [1709.02949], E. Metodiev, B. Nachman, J. Thaler

Optimal classifier

$$R_{\text{optimal}}(x) = \frac{p_S(x)}{p_B(x)}$$

• For mixed datasets with signal fractions f_i

$$R_{\text{mixed}}(x) = \frac{f_1 R_{\text{optimal}}(x) + (1 - f_1)}{f_2 R_{\text{optimal}}(x) + (1 - f_2)}$$

→ Monotonically increasing function of

$$R_{\text{optimal}}(x)$$
 as long as $f_1 > f_2$

→ Same decision boundaries

Application to resonance searches

Idealized Anomaly Detector

Recreated from [2109.00546]

Application to resonance searches

Application to resonance searches

Pick on simulations

Pick on simulations

 Advantages: metrics that directly access background & signal labels

Pick on simulations

- Advantages: metrics that directly access background & signal labels
- Disadvantages: less model agnostic, dependent on specific simulation & chosen signals

Pick on simulations

- Advantages: metrics that directly access background & signal labels
- Disadvantages: less model agnostic, dependent on specific simulation & chosen signals

Pick on data

Advantages: more model agnostic

Pick on simulations

- Advantages: metrics that directly access background & signal labels
- Disadvantages: less model agnostic, dependent on specific simulation & chosen signals

- Advantages: more model agnostic
- Disadvantages: limited number of signal events results in noisy metrics

Pick on simulations

- Advantages: metrics that directly access background & signal labels
- Disadvantages: less model agnostic, dependent on specific simulation & chosen signals

- Advantages: more model agnostic
- Disadvantages: limited number of signal events results in noisy metrics
 - →Investigate how problematic this noise is

LHCO R&D dataset

"The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics" [2101.08320], G. Kasieczka, B. Nachman, D. Shih et. al.

- Benchmark dataset for anomaly detection
- QCD dijet background (1M events)
- Signal (N_{sig} events)

Data-driven metric: Val loss

$$BCE = -\log p_{\text{pred, true}}$$

• Random scores: all events $p_{pred} = 0.5$

$$BCE_{\rm random} = \ln 2 \approx 0.6931$$

• Optimal scores: $p_{\mathrm{pred},B}=0.5$, $p_{\mathrm{pred},S}=1$, e.g.

$$BCE_{\text{opt}} = \frac{10^5 - 1000}{10^5} \ln 2 + \frac{1000}{10^5} \ln 1 \approx 0.6924$$

→ Dominated by background (noisy)

Data-driven metric: Val loss

$$BCE = -\log p_{\text{pred, true}}$$

• Random scores: all events $p_{\rm pred} = 0.5$

$$BCE_{\rm random} = \ln 2 \approx 0.6931$$

• Optimal scores: $p_{\mathrm{pred},B}=0.5$, $p_{\mathrm{pred},S}=1$, e.g.

$$BCE_{\text{opt}} = \frac{10^5 - 1000}{10^5} \ln 2 + \frac{1000}{10^5} \ln 1 \approx 0.6924$$

→ Dominated by background (noisy)

- SIC curve calculated at all classifier scores
 - →Can pick large threshold

- SIC curve calculated at all classifier scores
 - →Can pick large threshold

- SIC curve calculated at all classifier scores
 - →Can pick large threshold

- SIC curve calculated at all classifier scores
 - →Can pick large threshold
- Val SIC very close to random
 - →Subtract random

- SIC curve calculated at all classifier scores
 - →Can pick large threshold
- Val SIC very close to random
 - → Subtract random
- For most signal-like events, pick maximum

- SIC curve calculated at all classifier scores
 - → Can pick large threshold
- Val SIC very close to random
 - → Subtract random
- For most signal-like events, pick maximum
- →Will refer to this as Val SIC

Idea:

 Test HP configurations and pick best based on each metric

Idea:

 Test HP configurations and pick best based on each metric

Results:

Benchmark: Default HP optimized for this setup

Idea:

 Test HP configurations and pick best based on each metric

Results:

- Benchmark: Default HP optimized for this setup
- Max SIC: Performance comparable to benchmark

Idea:

 Test HP configurations and pick best based on each metric

Results:

- Benchmark: Default HP optimized for this setup
- Max SIC: Performance comparable to benchmark
- Val loss: fails at low N_{sig}

Idea:

 Test HP configurations and pick best based on each metric

Results:

- Benchmark: Default HP optimized for this setup
- Max SIC: Performance comparable to benchmark
- Val loss: fails at low N_{sig}
- Val SIC: Performance close to max SIC & benchmark

Picking the setup

Procedure:

- Pick several architectures
- Optimize HP for each
- Train each setup on ½ data, evaluate metrics on ½ data
- Pick best setup based on metric

Picking the setup

Procedure:

- Pick several architectures
- Optimize HP for each
- Train each setup on ½ data, evaluate metrics on ½ data
- Pick best setup based on metric

Result:

Val SIC picks best model almost everywhere

→ Fails at very low signal injections (expected)

 Investigated two data-driven metrics for model agnostic setup optimization

- Investigated two data-driven metrics for model agnostic setup optimization
 - Val loss: too sensitive to background distribution

- Investigated two data-driven metrics for model agnostic setup optimization
 - Val loss: too sensitive to background distribution
 - 2. Val SIC: highly correlated with max SIC by focusing on most signal-like events

- Investigated two data-driven metrics for model agnostic setup optimization
 - Val loss: too sensitive to background distribution
 - 2. Val SIC: highly correlated with max SIC by focusing on most signal-like events
- Optimizing on val SIC leads to excellent anomaly detection performance

- Investigated two data-driven metrics for model agnostic setup optimization
 - Val loss: too sensitive to background distribution
 - 2. Val SIC: highly correlated with max SIC by focusing on most signal-like events
- Optimizing on val SIC leads to excellent anomaly detection performance
- Behind the scenes: Seen comparable results for CWoLa Hunting and CATHODE

Backup

Optimized hyperparameters


```
params = {}
params["lr"] = float(np.random.choice([0.01, 0.005, 0.001, 0.0005, 0.0001]))
params["batch_size"] = int(np.random.choice([64, 128, 256, 512, 1024, 2048, 5096]))
params["layers"] = [64,64,64]#layers
params["epochs"] = int(30)
params["dropout"] = float(np.random.choice([0, 0.1, 0.2, 0.3, 0.4, 0.5]))
params["weight_decay"] = float(np.random.choice([0,1e-4, 1e-3, 1e-2, 1e-5]))
params["momentum"] = float(np.random.choice([0.9, 0.99, 0.8, 0.95]))
```

HP optimization: General setting

HP optimization: HGB Baseline

- Different metrics show very similar performance
- While performance at N_{sig} = 1000 is optimal with default hyperparameters, optimizing for lower signal injections can result in slight performance gain
- Trend generally holds up for extended sets but performance gain decreases

Optimization as a multi-step process

Think up general setup options:

- Classifier choice
- Ensemble strategy

Optimize HP for each option

Train optimized setup on ½ data, calculate metric on ½ data

Pick final setup based on metric

Retrain setup on full data

Performance on half statistics

Picking option based on val SIC

Final performance

