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Anomaly Detection
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Anomaly Detection

Anomaly 
Detector
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Classification Problem

Classifier

SignalBackground

• Optimal classifier 

𝑅optimal 𝑥 =
𝑝𝑆 𝑥

𝑝𝐵 𝑥
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Classification Problem

Classifier

SignalBackground

• Optimal classifier 

𝑅optimal 𝑥 =
𝑝𝑆 𝑥

𝑝𝐵 𝑥

• For Machine Learning use binary cross entropy 
loss

𝐵𝐶𝐸 = − log 𝑝pred, true

→Optimal solution function monotonically 
related to 𝑅optimal

𝑓 𝑥 =
𝑝𝑆 𝑥

𝑝𝐵 𝑥 + 𝑝𝑆(𝑥)

→Same decision boundaries
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Weakly Supervised Classification

Classifier

SignalBackground

“Classification without labels: Learning from mixed samples in high energy physics” [1709.02949], E. Metodiev, B. Nachman, 
J. Thaler

• Optimal classifier 

𝑅optimal 𝑥 =
𝑝𝑆 𝑥

𝑝𝐵 𝑥

• For mixed datasets with signal fractions 𝑓𝑖

𝑅mixed 𝑥 =
𝑓1𝑅optimal 𝑥 + 1 − 𝑓1

𝑓2𝑅optimal 𝑥 + 1 − 𝑓2

https://arxiv.org/abs/1708.02949
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Weakly Supervised Classification

Classifier

SignalBackground

“Classification without labels: Learning from mixed samples in high energy physics” [1709.02949], E. Metodiev, B. Nachman, 
J. Thaler

• Optimal classifier 

𝑅optimal 𝑥 =
𝑝𝑆 𝑥

𝑝𝐵 𝑥

• For mixed datasets with signal fractions 𝑓𝑖

𝑅mixed 𝑥 =
𝑓1𝑅optimal 𝑥 + 1 − 𝑓1

𝑓2𝑅optimal 𝑥 + 1 − 𝑓2

→Monotonically increasing function of 

𝑅optimal 𝑥 as long as 𝑓1 > 𝑓2

→Same decision boundaries

https://arxiv.org/abs/1708.02949
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Application to resonance searches

Recreated from [2109.00546]

SR
Data

Background
Template

Classifier

https://arxiv.org/abs/2109.00546
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Idealized Anomaly Detector

Recreated from [2109.00546]

SR
Data

SR
Background

Classifier

https://arxiv.org/abs/2109.00546
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Application to resonance searches

Recreated from [2109.00546]

Classifier

https://arxiv.org/abs/2109.00546
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Application to resonance searches

Recreated from [2109.00546]

Classifier
How do we pick the best 

classifier architecture?

https://arxiv.org/abs/2109.00546
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Picking the classifier architecture

Pick on simulations

Pick on data
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Picking the classifier architecture
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• Advantages: metrics that directly access 
background & signal labels
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Picking the classifier architecture

Pick on simulations

• Advantages: metrics that directly access 
background & signal labels

• Disadvantages: less model agnostic, 
dependent on specific simulation & chosen 
signals

Pick on data

• Advantages: more model agnostic

• Disadvantages: limited number of signal 
events results in noisy metrics
→Investigate how problematic this noise is
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LHCO R&D dataset

• Benchmark dataset for anomaly detection

• QCD dijet background (1M events)

• Signal (𝑁𝑠𝑖𝑔 events)

“The LHC Olympics 2020: A Community Challenge for Anomaly Detection in High Energy Physics” [2101.08320], G. 
Kasieczka, B. Nachman, D. Shih et. al. 

file:///“The%20LHC%20Olympics%202020/%20A%20Community%20Challenge%20for%20Anomaly%20Detection%20in%20High%20Energy%20Physics”%20%5B2101.08320%5D,%20G.%20Kasieczka,%20B.%20Nachman,%20D.%20Shih%20et.%20al.
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Supervised metric: Max SIC 
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Supervised metric: Max SIC 
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Supervised metric: Max SIC 

Poisson 
Significance 

Improvement
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Supervised metric: Max SIC 

Take maximum (with 
statistics cutoff at 20% 

stat. error)
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Data-driven metric: Val loss

𝐵𝐶𝐸 = − log 𝑝pred, true

• Random scores: all events 𝑝pred = 0.5

𝐵𝐶𝐸random = ln 2 ≈ 0.6931

• Optimal scores: 𝑝pred, 𝐵 = 0.5, 𝑝pred, 𝑆 = 1, e.g.

𝐵𝐶𝐸opt =
105 − 1000

105
ln 2 +

1000

105
ln 1 ≈ 0.6924

→Dominated by background (noisy)
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Data-driven metric: Val loss

𝐵𝐶𝐸 = − log 𝑝pred, true

• Random scores: all events 𝑝pred = 0.5

𝐵𝐶𝐸random = ln 2 ≈ 0.6931

• Optimal scores: 𝑝pred, 𝐵 = 0.5, 𝑝pred, 𝑆 = 1, e.g.

𝐵𝐶𝐸opt =
105 − 1000

105
ln 2 +

1000

105
ln 1 ≈ 0.6924

→Dominated by background (noisy)

Large scores
→ Signal-dominated
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Data-driven metric: Alternatives

• SIC curve calculated at all classifier scores

→Can pick large threshold

• Val SIC very close to random

→Subtract random
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Optimizing Hyperparameters

Idea:

• Test HP configurations and 
pick best based on each 
metric

• Max SIC: Performance 
comparable to benchmark

• Val loss: fails at low 𝑁𝑠𝑖𝑔

• Val SIC: Performance close to 
max SIC & benchmark
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• Test HP configurations and 
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Picking the setup

Procedure: 

• Pick several architectures

• Optimize HP for each

• Train each setup on ½ data, 
evaluate metrics on ½ data

• Pick best setup based on 
metric

Result: 

Val SIC picks best model almost 
everywhere

→Fails at very low signal 
injections (expected)
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Conclusion

• Investigated two data-driven metrics for 

model agnostic setup optimization
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Conclusion

• Investigated two data-driven metrics for 

model agnostic setup optimization

1. Val loss: too sensitive to background 

distribution

2. Val SIC: highly correlated with max SIC 

by focusing on most signal-like events

• Optimizing on val SIC leads to excellent 

anomaly detection performance 

• Behind the scenes: Seen comparable results 

for CWoLa Hunting and CATHODE
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Backup
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Optimized hyperparameters
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HP optimization: General setting

Train
Classifier

Random 
generate 

HP

Calculate 
metrics

DT models: Train 10x 
and take mean
NN: Train 1x but take 
best over all epochs

Choose best HP based 
on val SIC

Perform 𝑁ℎ𝑝 = 100 times Run training with 
these HP

Do for each 𝑵𝒔𝒊𝒈

Choose best HP based 
on val loss

Run training with 
these HP

Choose best HP based 
on max SIC

Run training with 
these HP

Important!
All metrics get the same set of 
HP to choose from, i.e. optimal 
choice is identical
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HP optimization: HGB Baseline

• Different metrics show very 
similar performance

• While performance at 𝑁𝑠𝑖𝑔 =

1000 is optimal with default 
hyperparameters, optimizing 
for lower signal injections 
can result in slight 
performance gain

• Trend generally holds up for 
extended sets but 
performance gain decreases
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Optimization as a multi-step process

Think up general setup 
options: 

• Classifier choice
• Ensemble strategy

AdaBoost

HistGradientBoost

MLP

Optimize HP 
for each 
option

Train optimized setup on 
½ data, calculate metric 

on ½ data

Pick final 
setup based 

on metric

Retrain 
setup on full 

data
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Performance on half statistics
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Picking option based on val SIC

What we pick Final performance
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