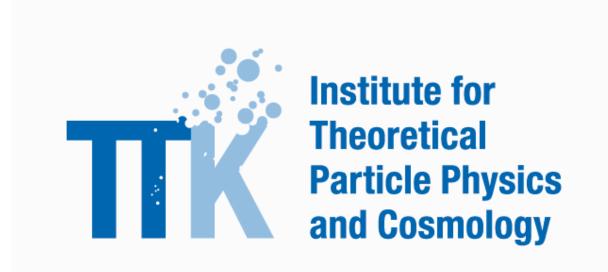
Energy Flow Polynomials for More Model-Agnostic Anomaly Detection

CRC Young Scientists Meeting 2025



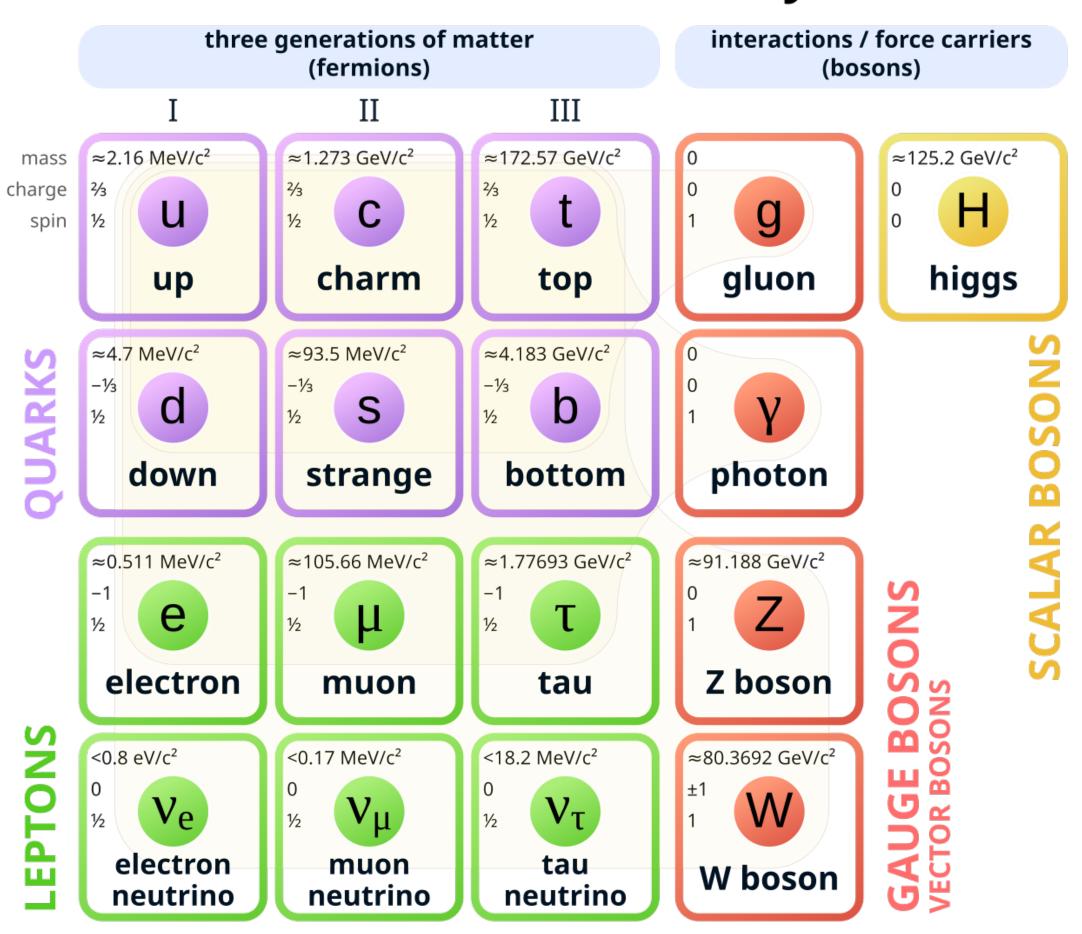
Lukas Lang

Energy Flow Polynomials for More Model-Agnostic Anomaly Detection

Anomaly DetectionThe Search for New Physics

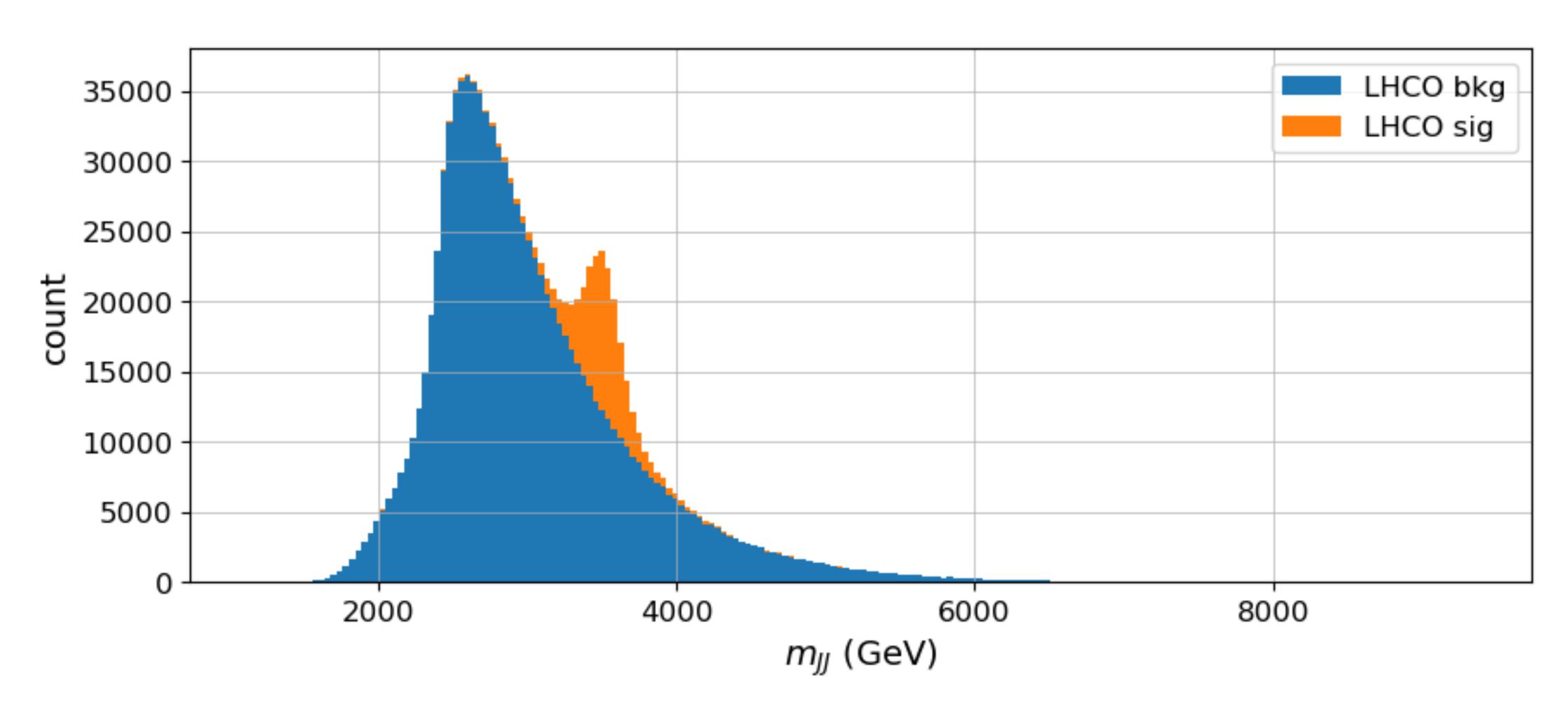
- The Standard Model of Particle Physics (SM) is the best theory we have so far
- Open questions going beyond the Standard Model (BSM)
 - Dark energy & dark matter
- Studying BSM is one of the missions of the Large Hadron Collider (LHC)

Standard Model of Elementary Particles



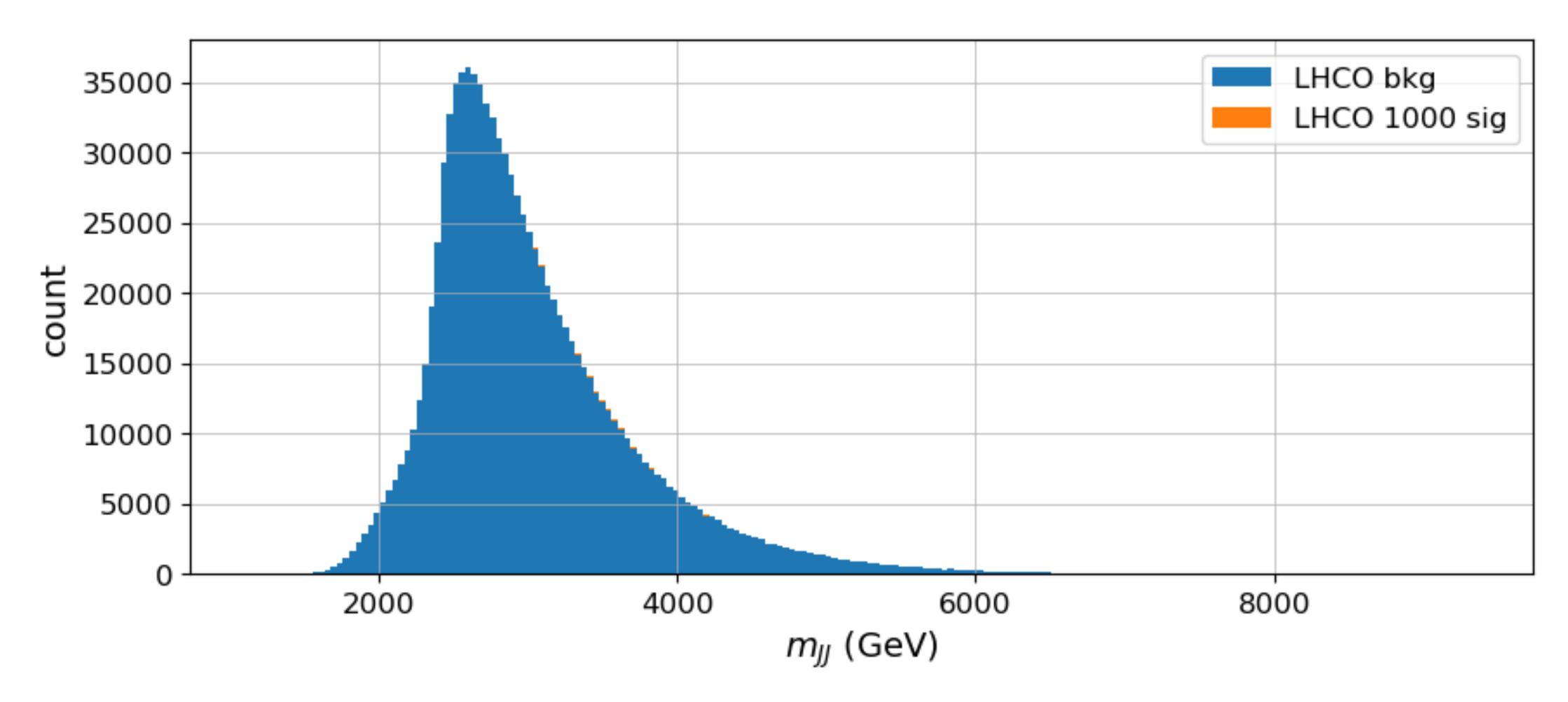
Searching for Resonances

LHC Olympics 2020 R&D Dataset



Searching for Resonances

LHC Olympics 2020 R&D Dataset



Energy Flow Polynomials for More Model-Agnostic Anomaly Detection

Classification Without Labels (CWoLa)

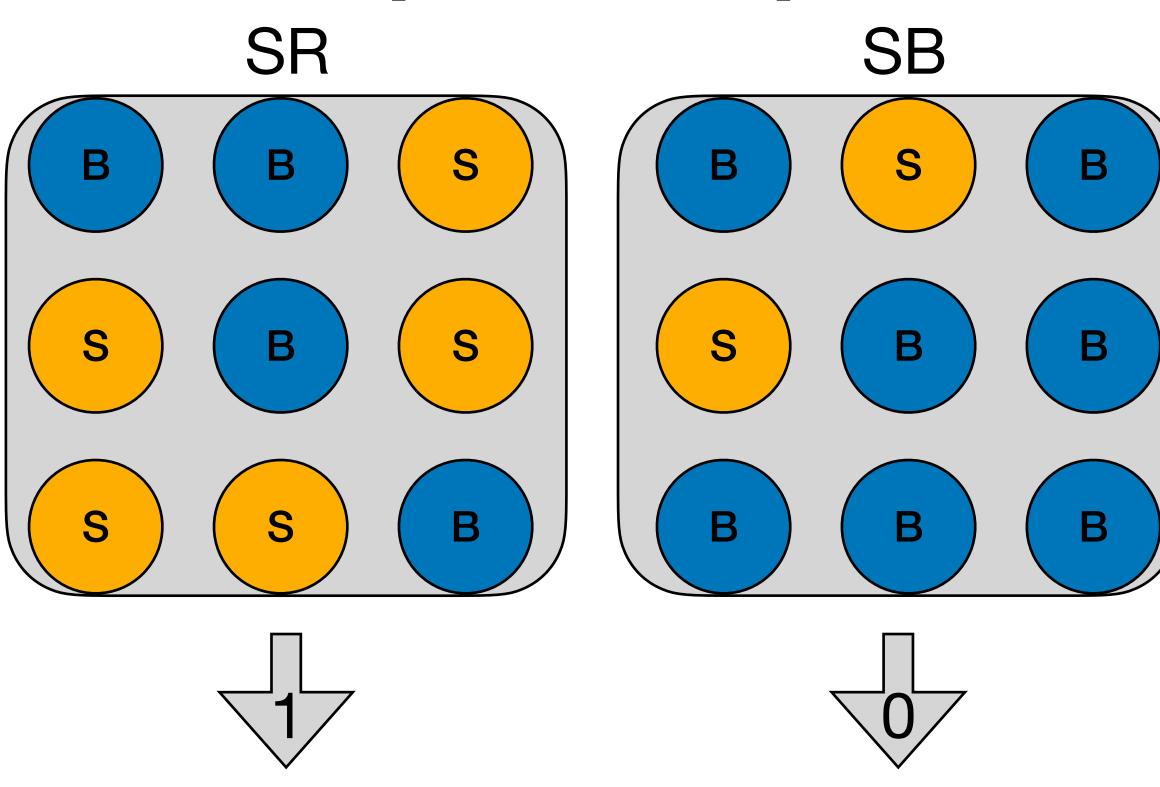
Weakly Supervised Learning

- Any monotonic function of the optimal classifier has the same decision boundaries as the optimal classifier $R_{optimal}(x) = \frac{p_S(x)}{p_B(x)}$
- Split into signal-enriched and backgroundenriched data set

$$p_i(x) = f_i p_S(x) + (1 - f_i) p_B(x)$$

$$R_{CWoLa}(x) = \frac{p_1(x)}{p_2(x)} = \frac{f_1 R_{optimal}(x) + (1 - f_1)}{f_2 R_{optimal}(x) + (1 - f_2)}$$

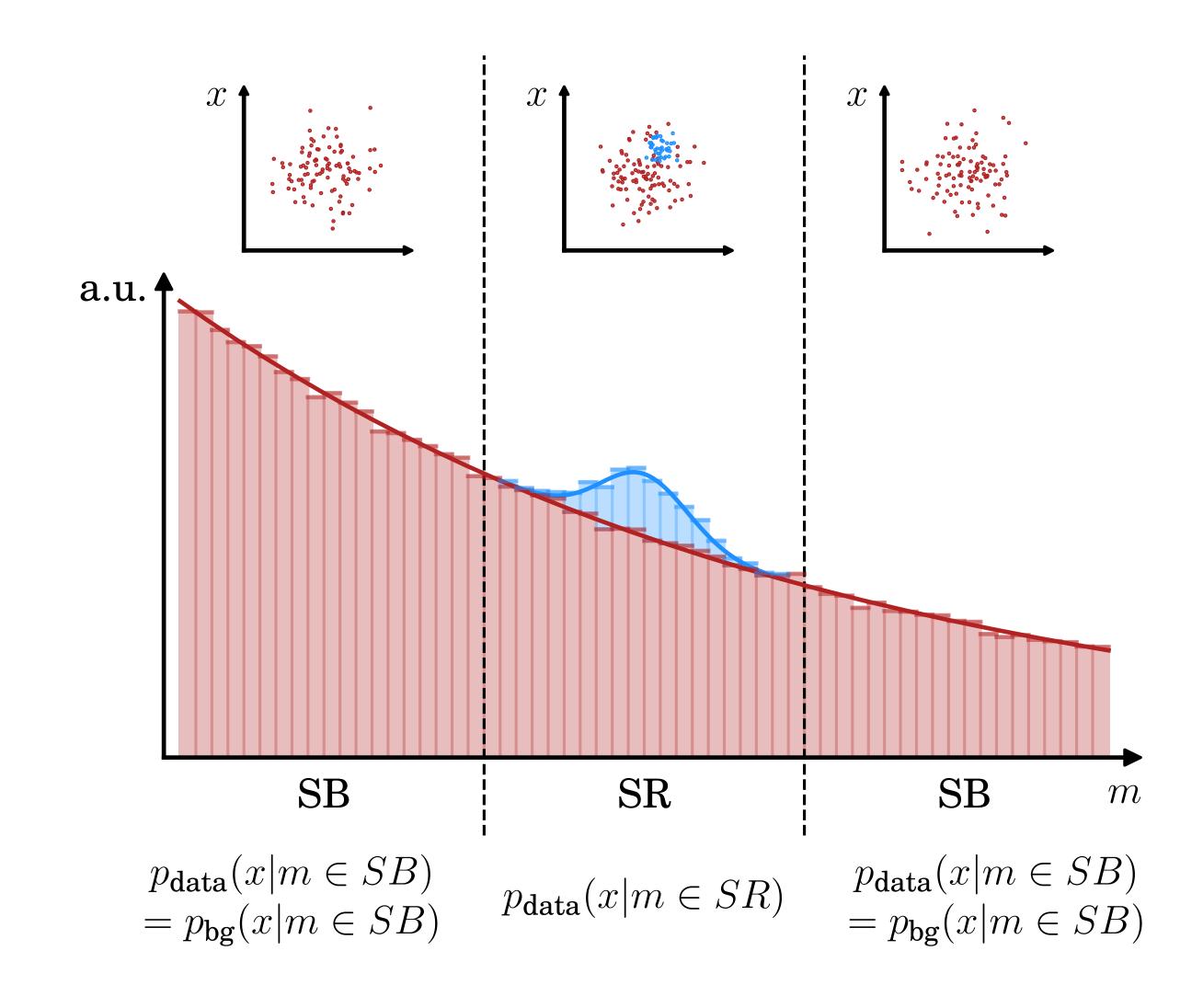
• Is monotonic for $f_1 > f_2$



Classifier

CWoLa HuntingWeakly Supervised Learning

- Assuming a resonance in the invariant mass
- Defining a signal-enriched (SR) and background-enriched (SB) regions
- The Idealised Anomaly Detector (IAD)
 - SB = Pure background located in the SR
- The IAD is a more realistic case than full supervision



LHC Olympics 2020 R&D datasets

2-prong signal $Z' \rightarrow XY$

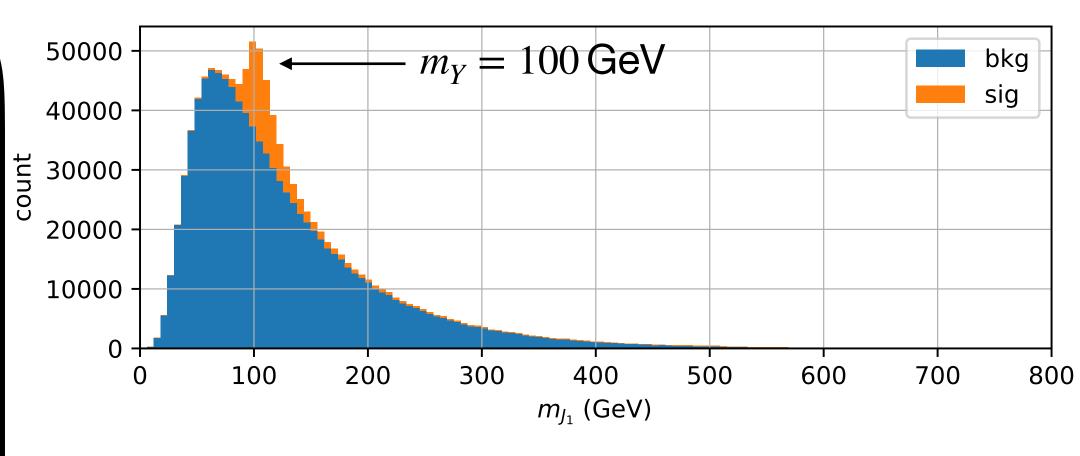
 $X \rightarrow qq \& Y \rightarrow qq$

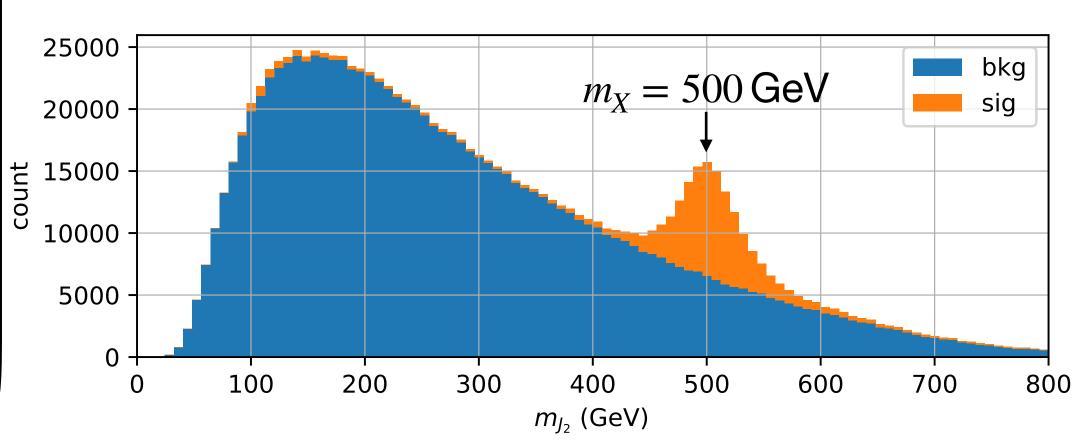
3-prong signal

 $Z' \rightarrow XY$

 $X \rightarrow qqq \& Y \rightarrow qqq$

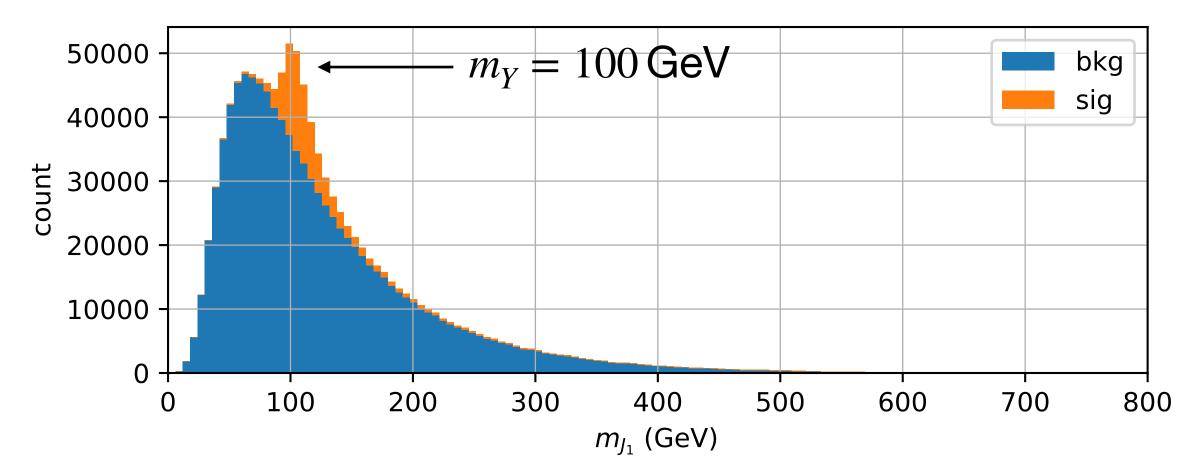
Background QCD dijets

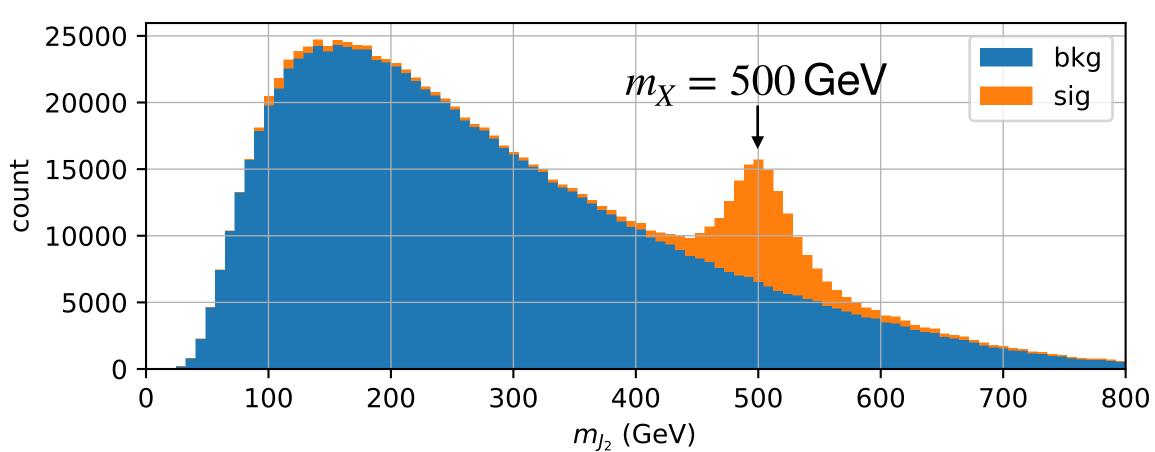


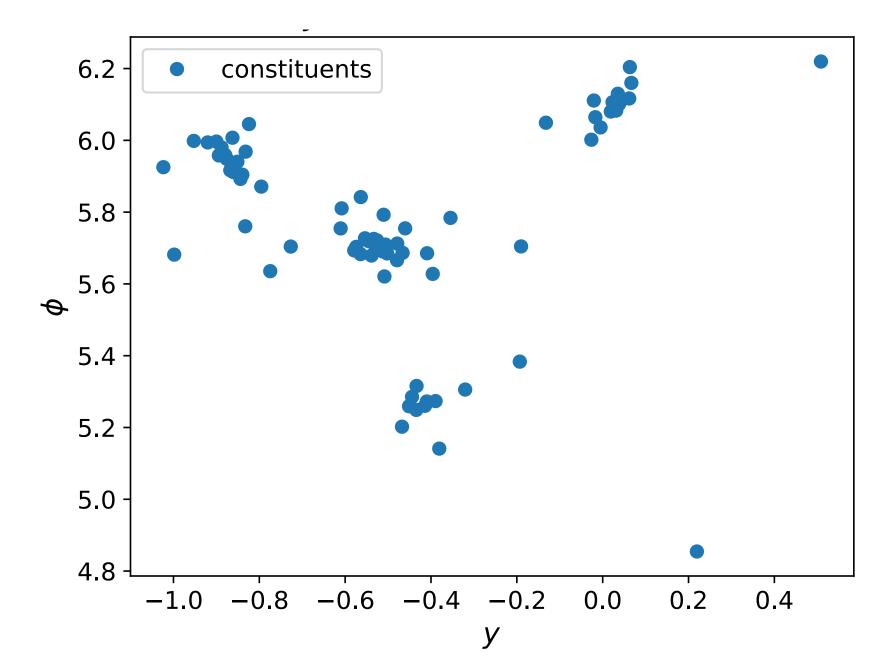


[1] LHC Olympics 2020

Jet Observables **Jet Mass**







Rapidity

$$y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$

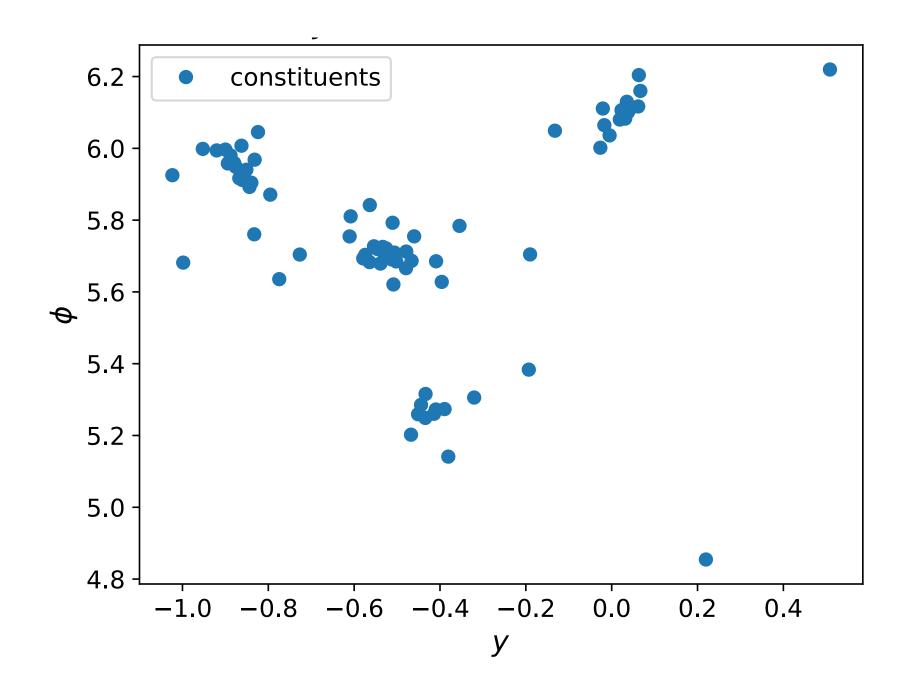
Azimuthal angle

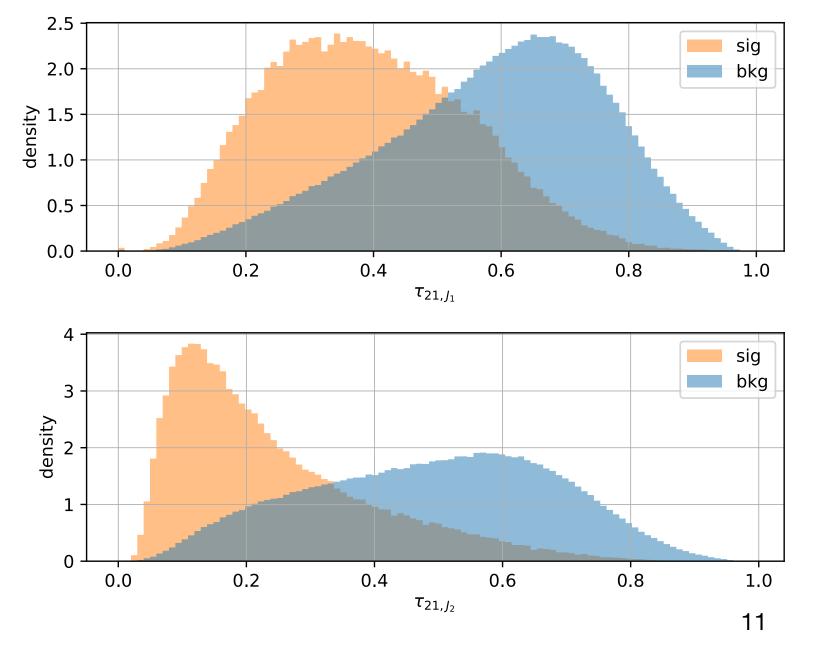
$$\phi = \arctan\left(\frac{p_y}{p_x}\right)$$

Jet Observables

N-Subjettiness τ_N

- Probing jets for a specific number of subjets N (or less)
- Idea being to cluster the constituents of a jet around N jet candidate axis
- One also often uses the subjettiness ration $\tau_{N\!M}=\frac{\tau_N}{\tau_M}$ for N>M





Energy Flow Polynomials for More Model-Agnostic Anomaly Detection

What are Energy Flow Polynomials?

Energy flow polynomials: A complete linear basis for jet substructure

Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler

Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: pkomiske@mit.edu, metodiev@mit.edu, jthaler@mit.edu

ABSTRACT: We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. The energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.

Mathematical representation

Energy Flow Polynomials (EFPs)

Energy Flow Polynomial for a graph G

$$EFP_{G} = \sum_{i_{1}=1}^{M} \cdots \sum_{i_{N}=1}^{M} z_{i_{1}} \cdots z_{i_{N}} \prod_{(k,\ell) \in G} \theta_{i_{k}i_{\ell}}$$
Approximately a solution of the second secon

Energy fraction

Angular distance between particle i_k and i_ℓ

Hadronic colliders

$$z_i = \left(\frac{p_{T,i}}{p_{T,J}}\right)^{\kappa} \qquad \theta_{ij} = \left(\Delta y_{ij}^2 + \Delta \phi_{ij}^2\right)^{\frac{\beta}{2}}$$

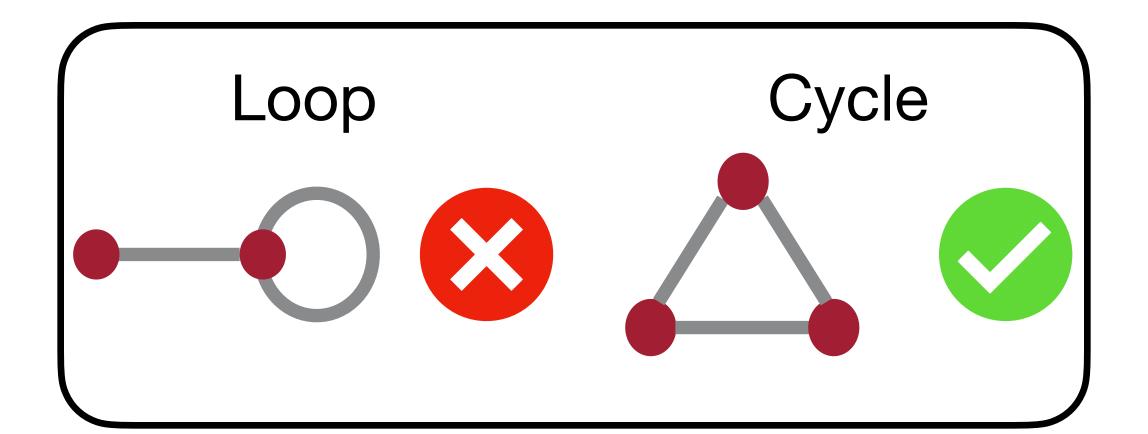
$$p_{T,J} \equiv \sum_{i=1}^{M} p_{T,i}$$

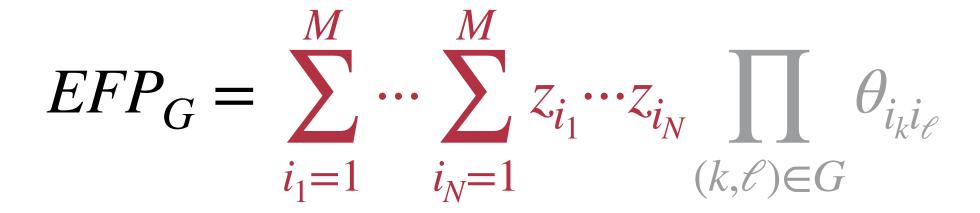
$$\Delta y_{ij} \equiv y_i - y_j$$

$$\Delta \phi_{ij} \equiv \phi_i - \phi_j$$

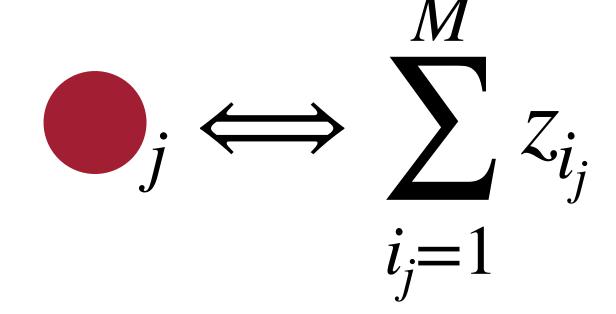
Multigraph correspondence Energy Flow Polynomials (EFPS)

- A multigraph is composed of vertices (N) which are connected by multiple edges (k, ℓ)
- Only loop-less multigraphs relate to EFPs





Vertex correspondence



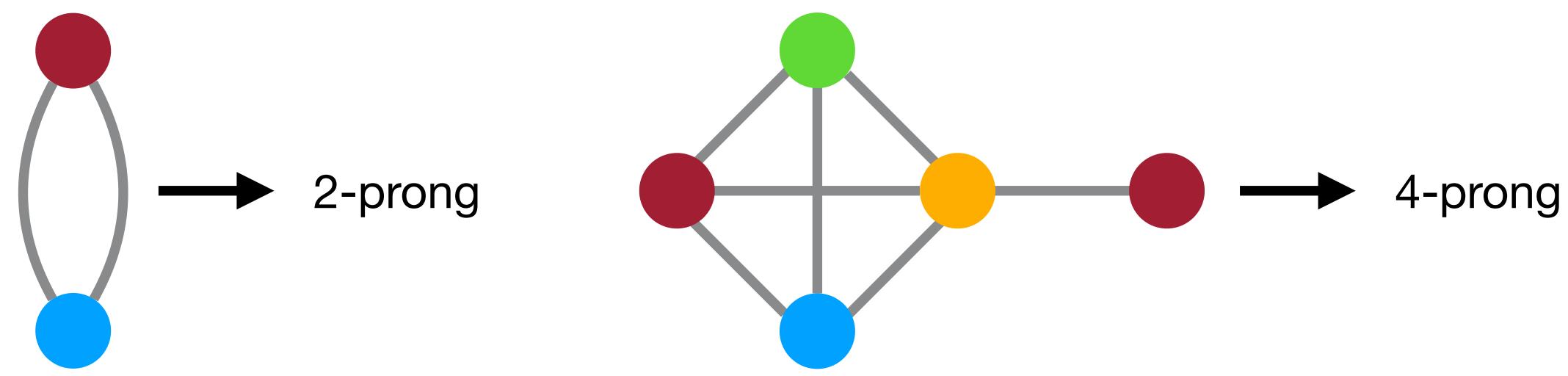
Edge correspondence

$$k - \ell \iff \theta_{i_k i_l}$$

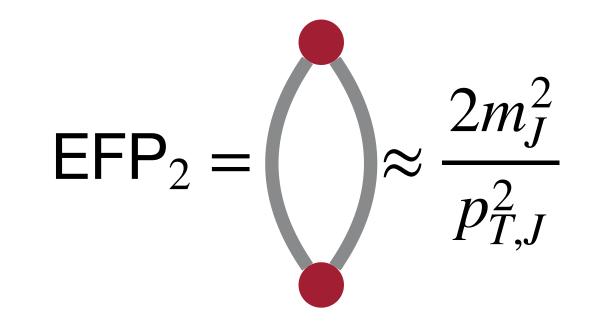
Chromatic number

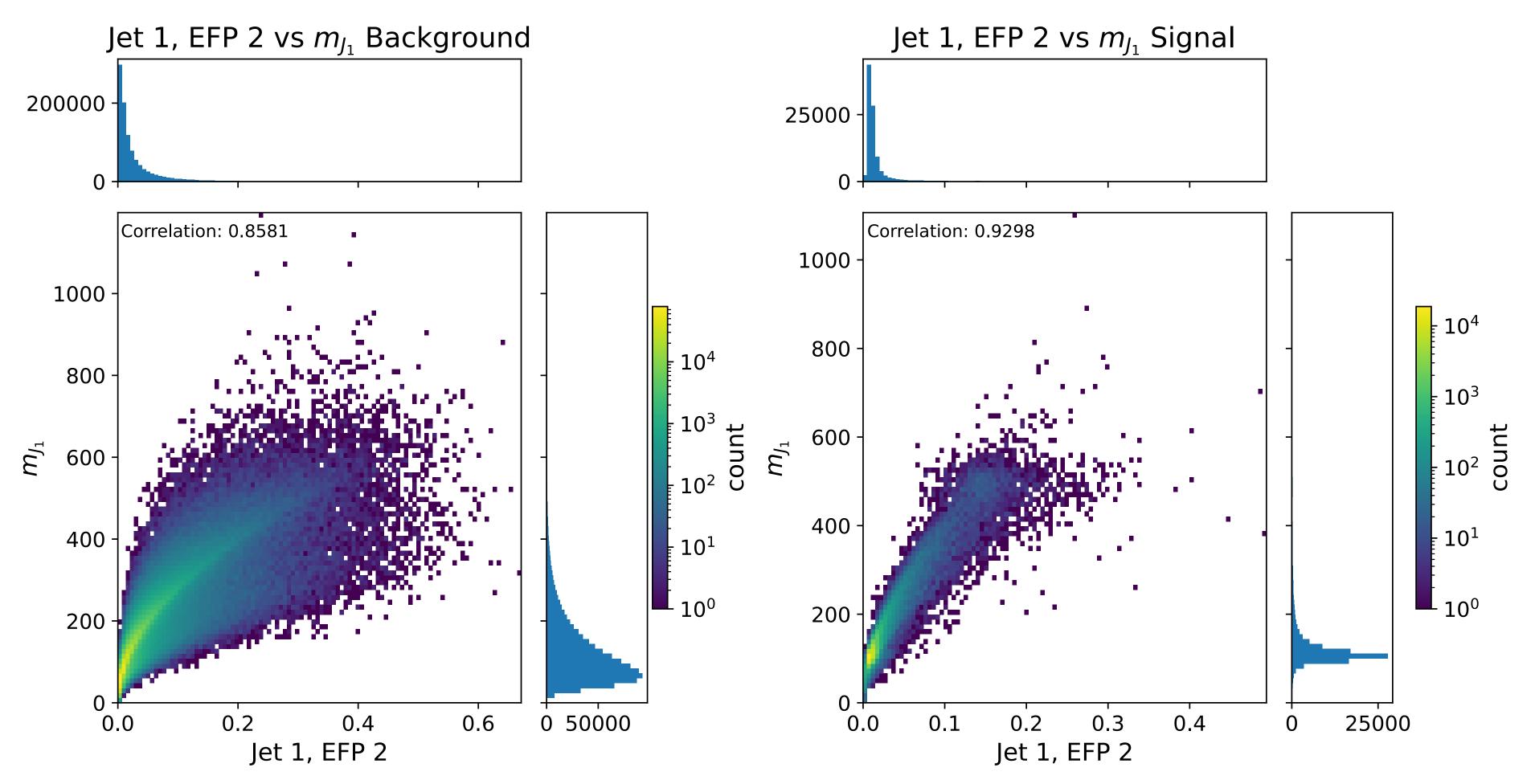
Energy Flow Polynomials (EFPs)

- The smallest number of colors needed to color vertices so that connected vertices do not have the same color
- The chromatic number corresponds to the number of separated prongs for which an EFP is first non-vanishing



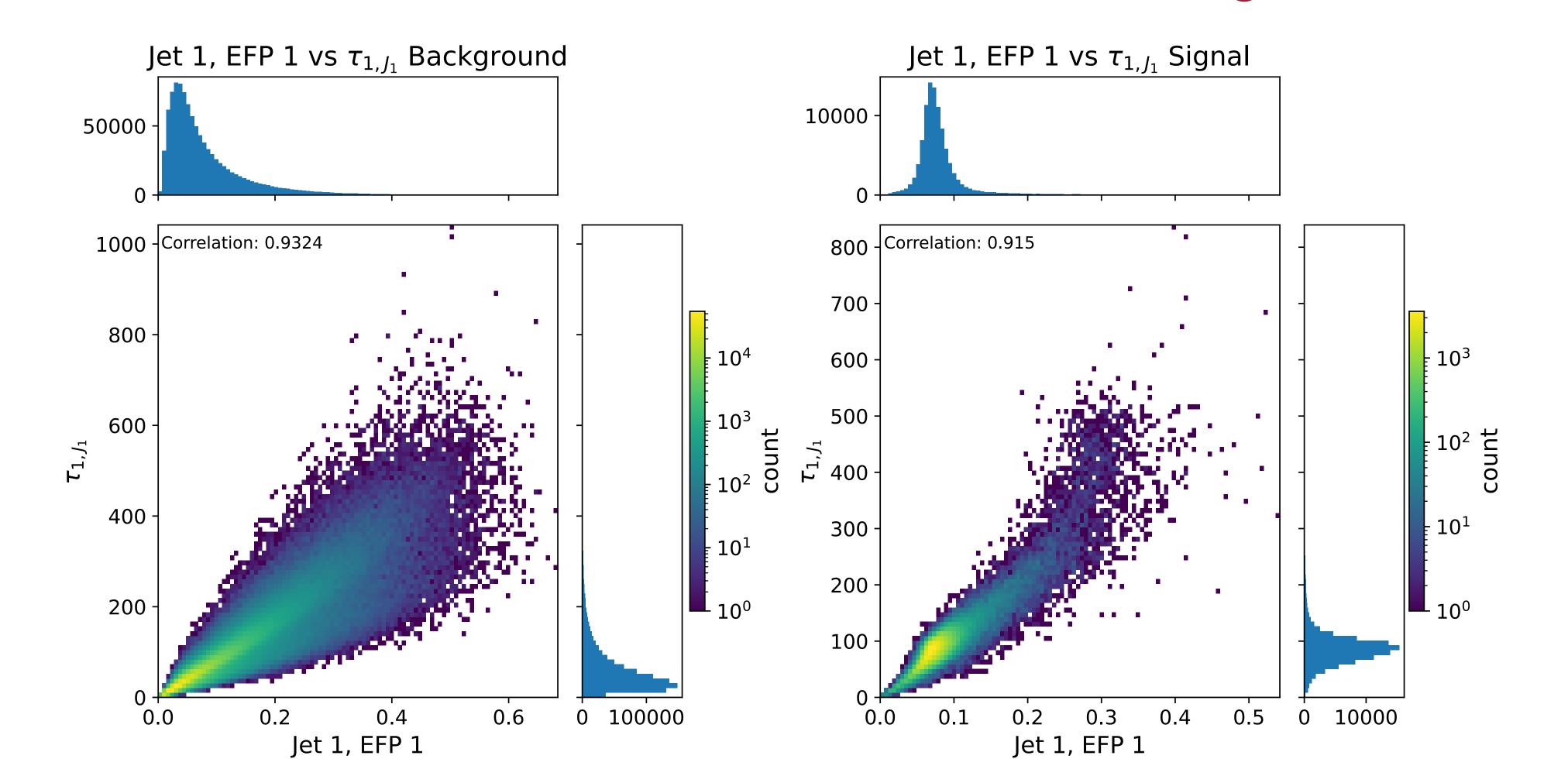
Example: Jet MassEnergy Flow Polynomials (EFPs)





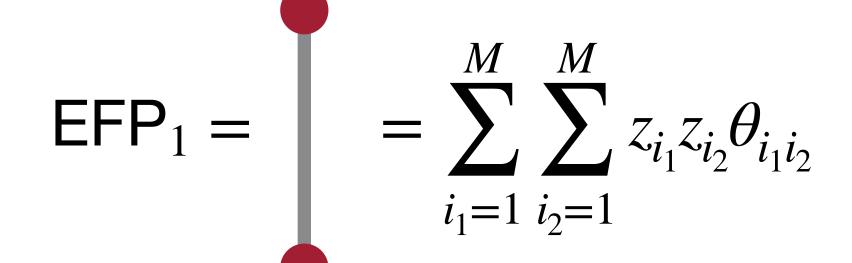
Example: 1-SubjettinessEnergy Flow Polynomials (EFPs)

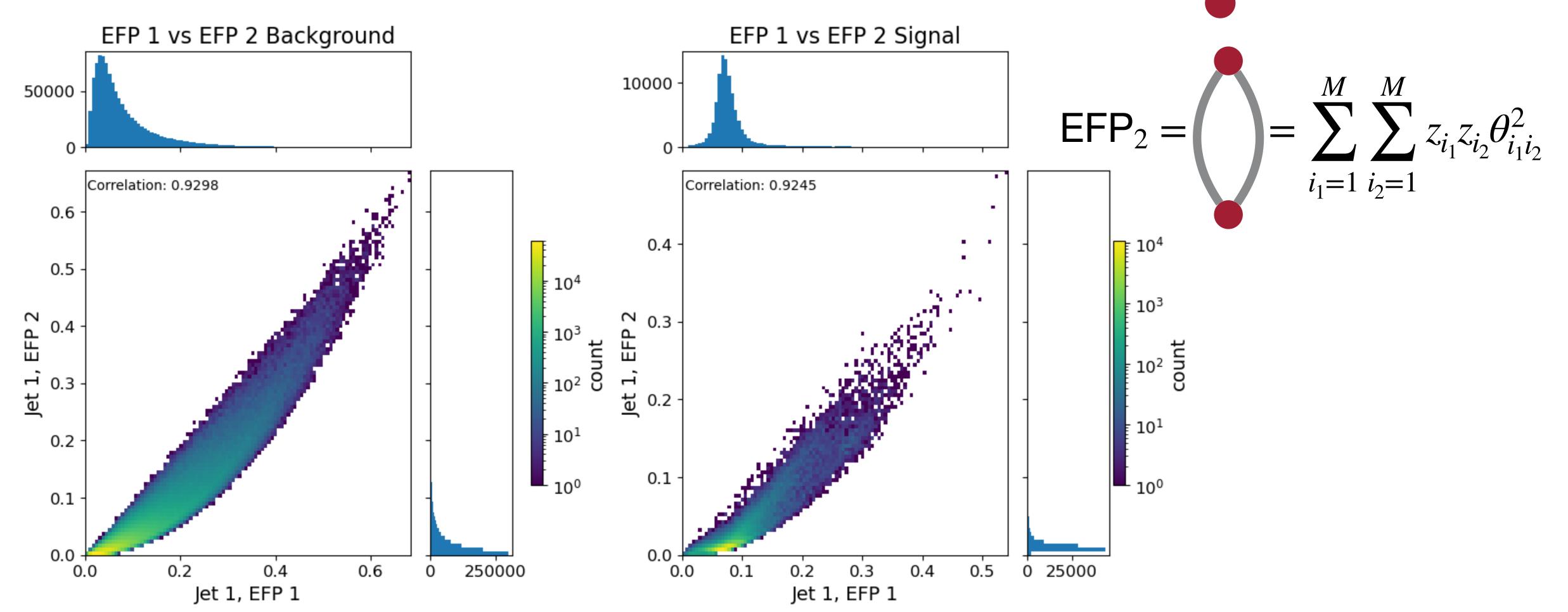
EFP₁ =
$$= \sum_{i_1=1}^{M} \sum_{i_2=1}^{M} z_{i_1} z_{i_2} \theta_{i_1 i_2}$$



Example: Different EFPs

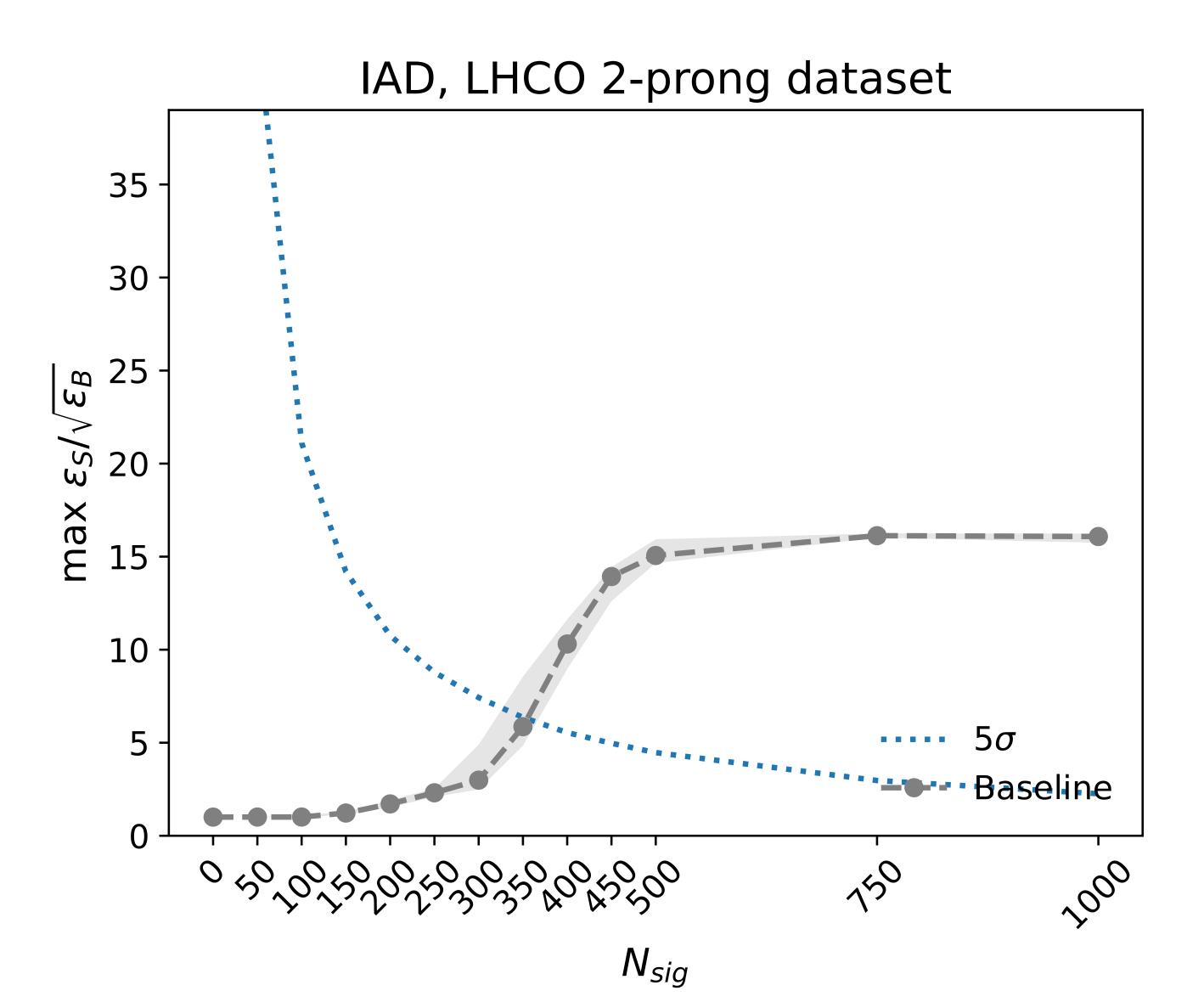
Energy Flow Polynomials (EFPs)



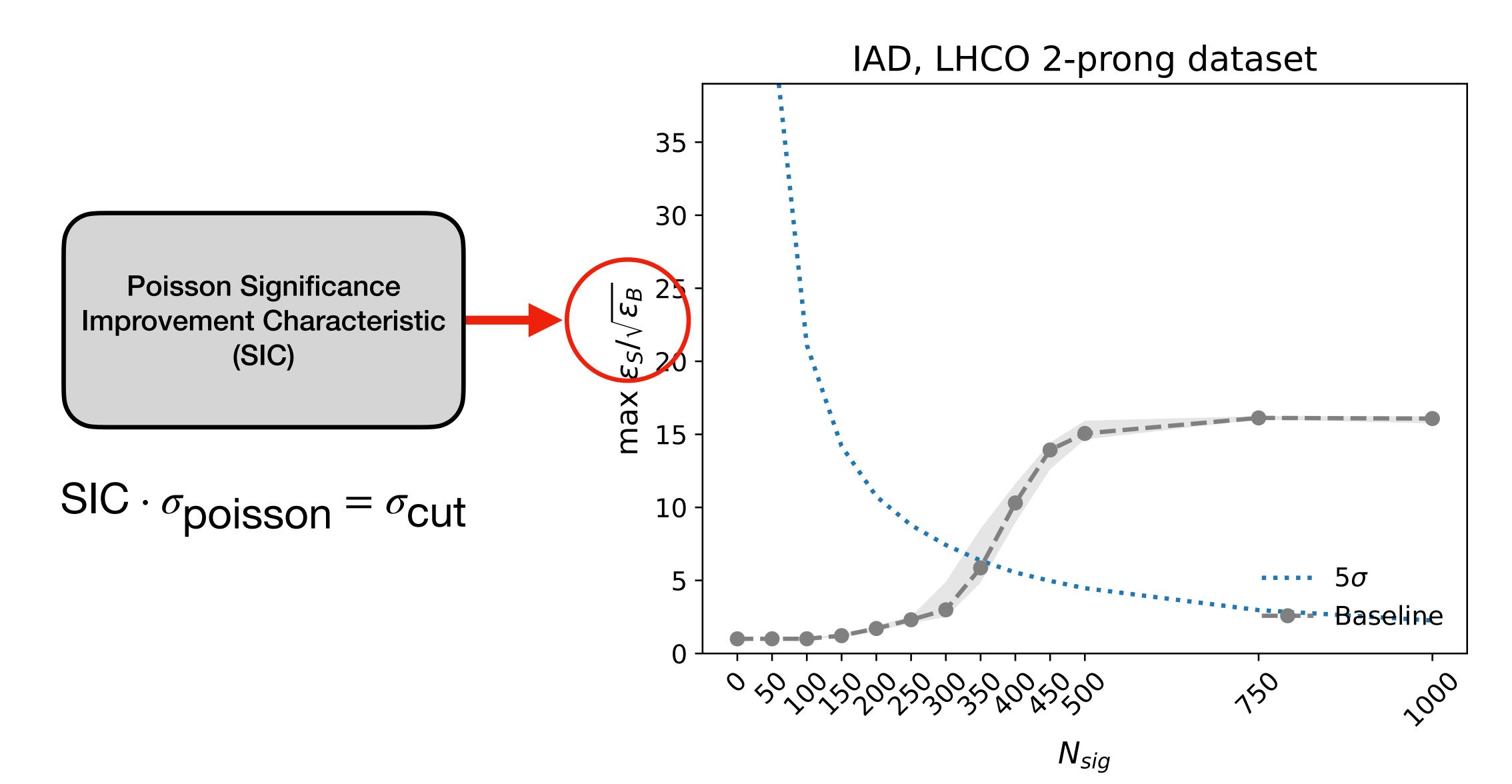


Idealised Anomaly Detector (IAD)

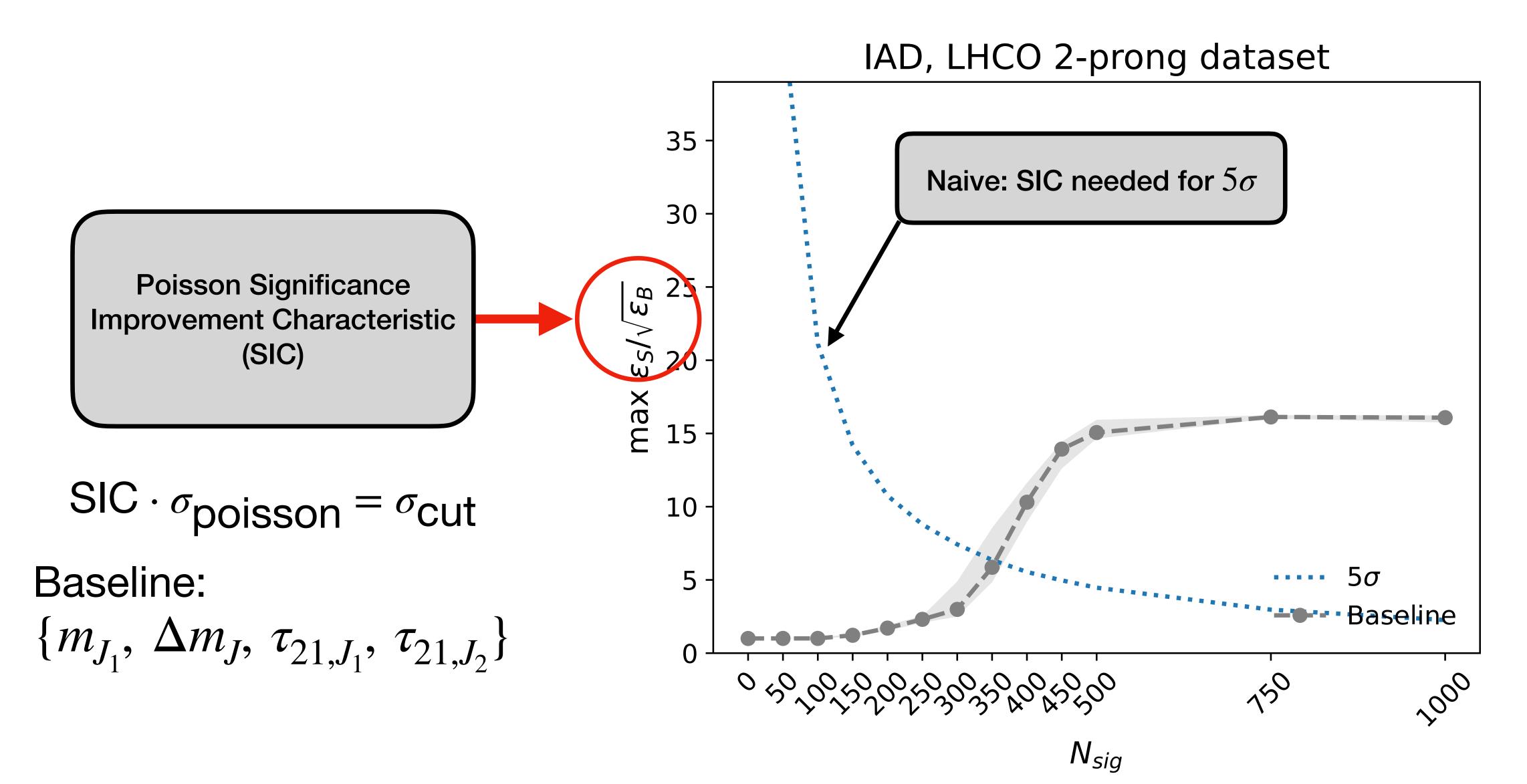
Evaluating Classifiers



Evaluating Classifiers



Evaluating Classifiers



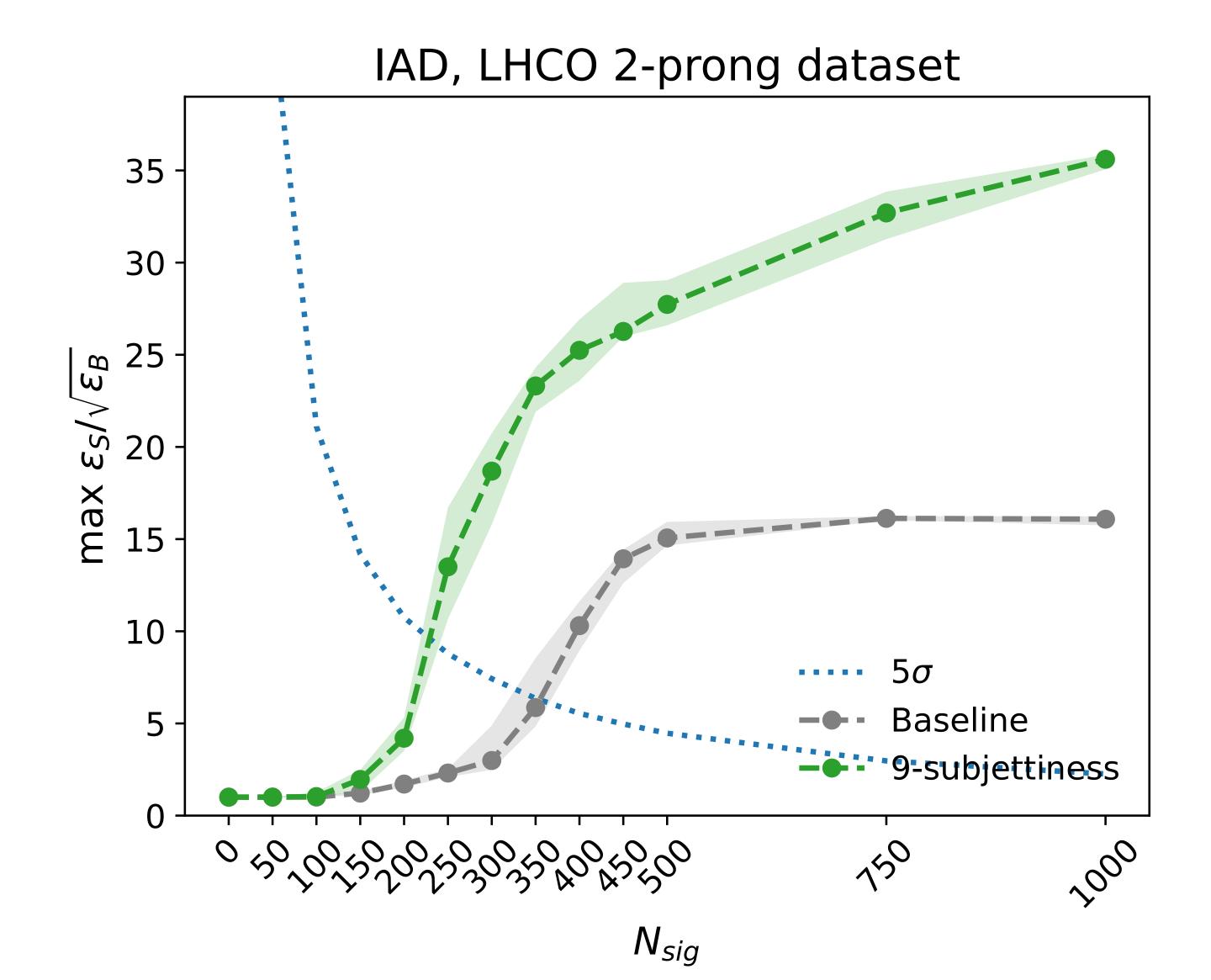
Baseline:

$$\{m_{J_1}, \Delta m_J, \tau_{21,J_1}, \tau_{21,J_2}\}$$

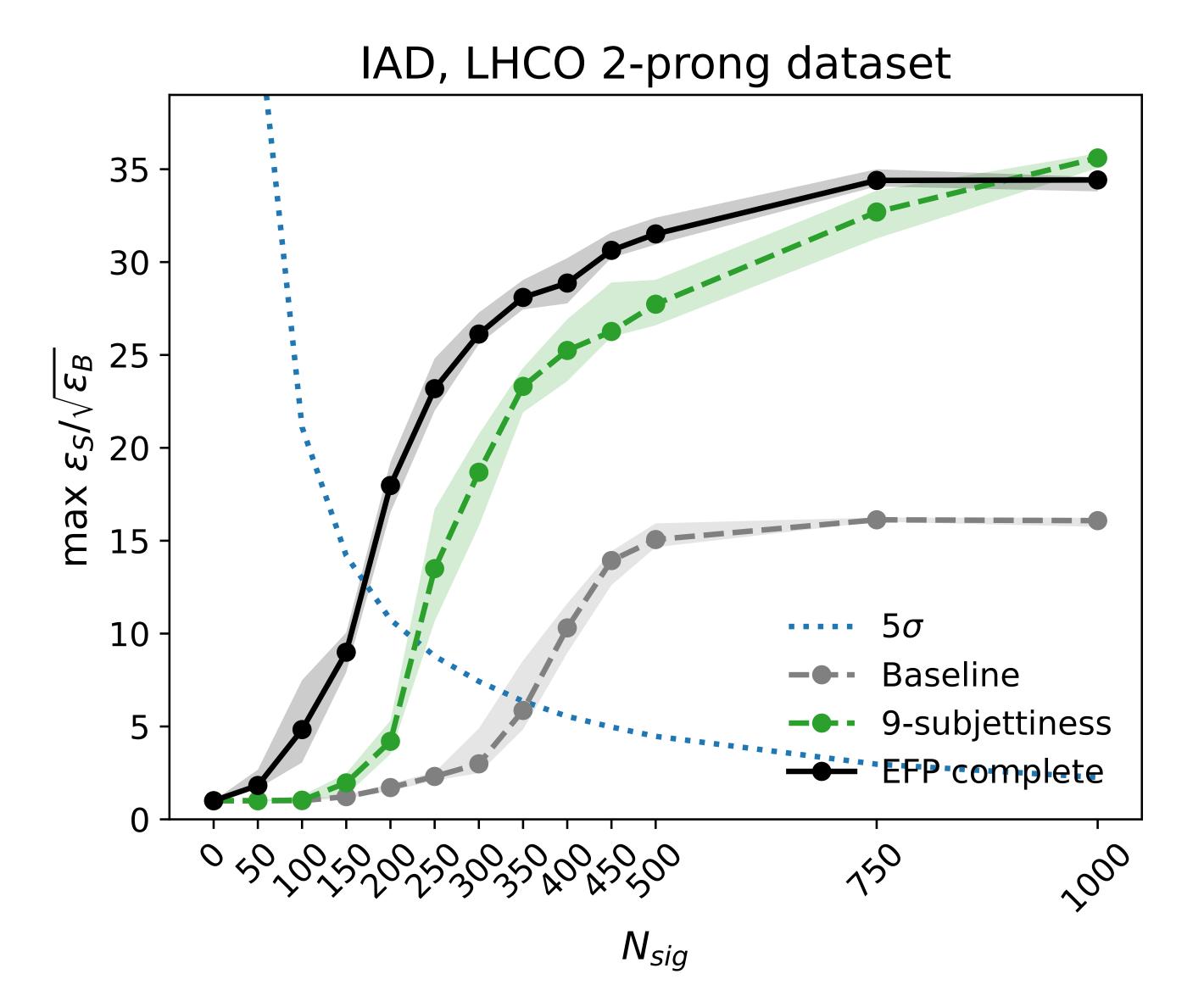
9-Subjettiness:

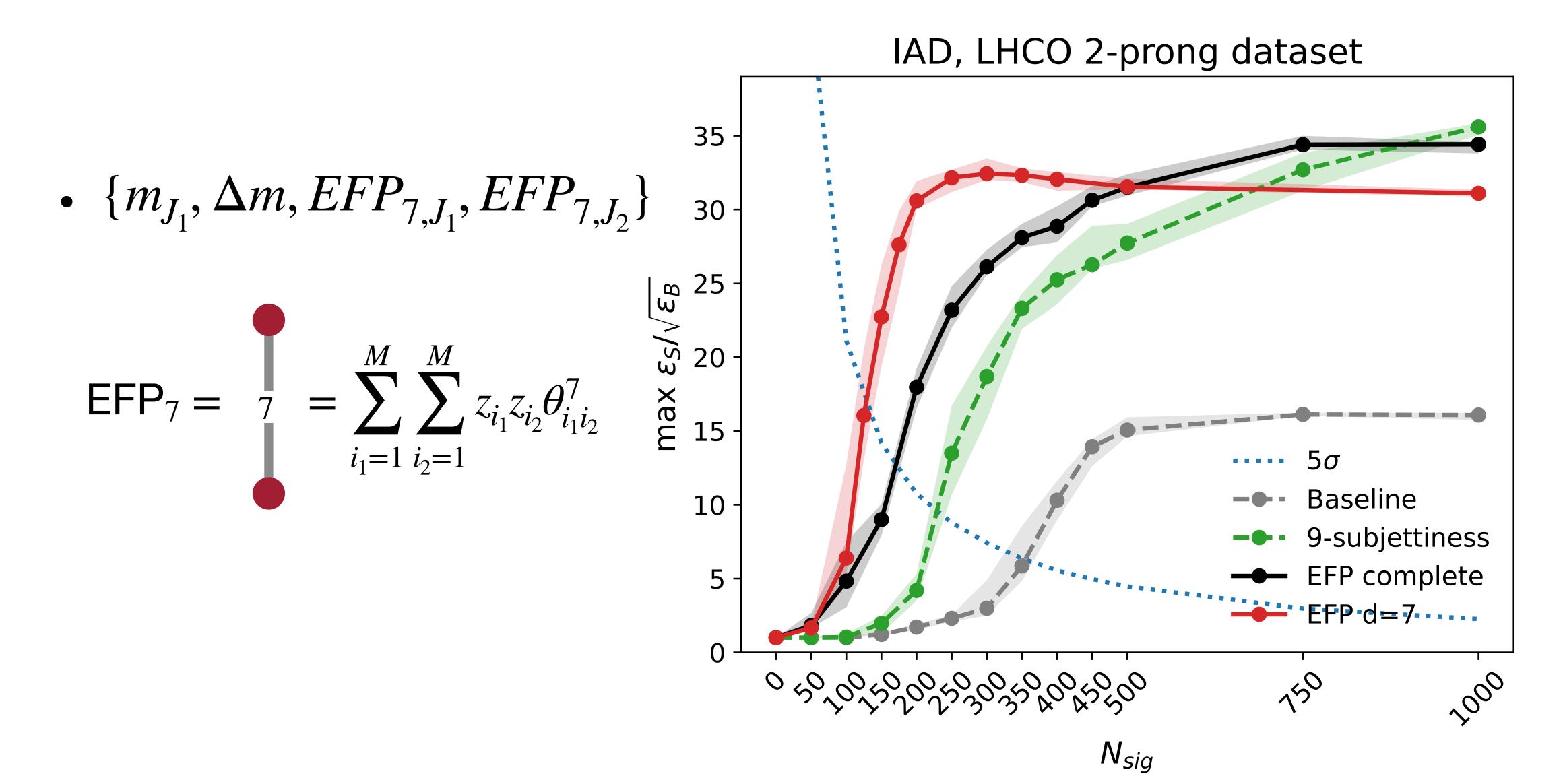
$$\{m_{J_1}, \Delta m_J, \tau_{N,J_1}, \tau_{N,J_2}\}$$

for $N \le 9$



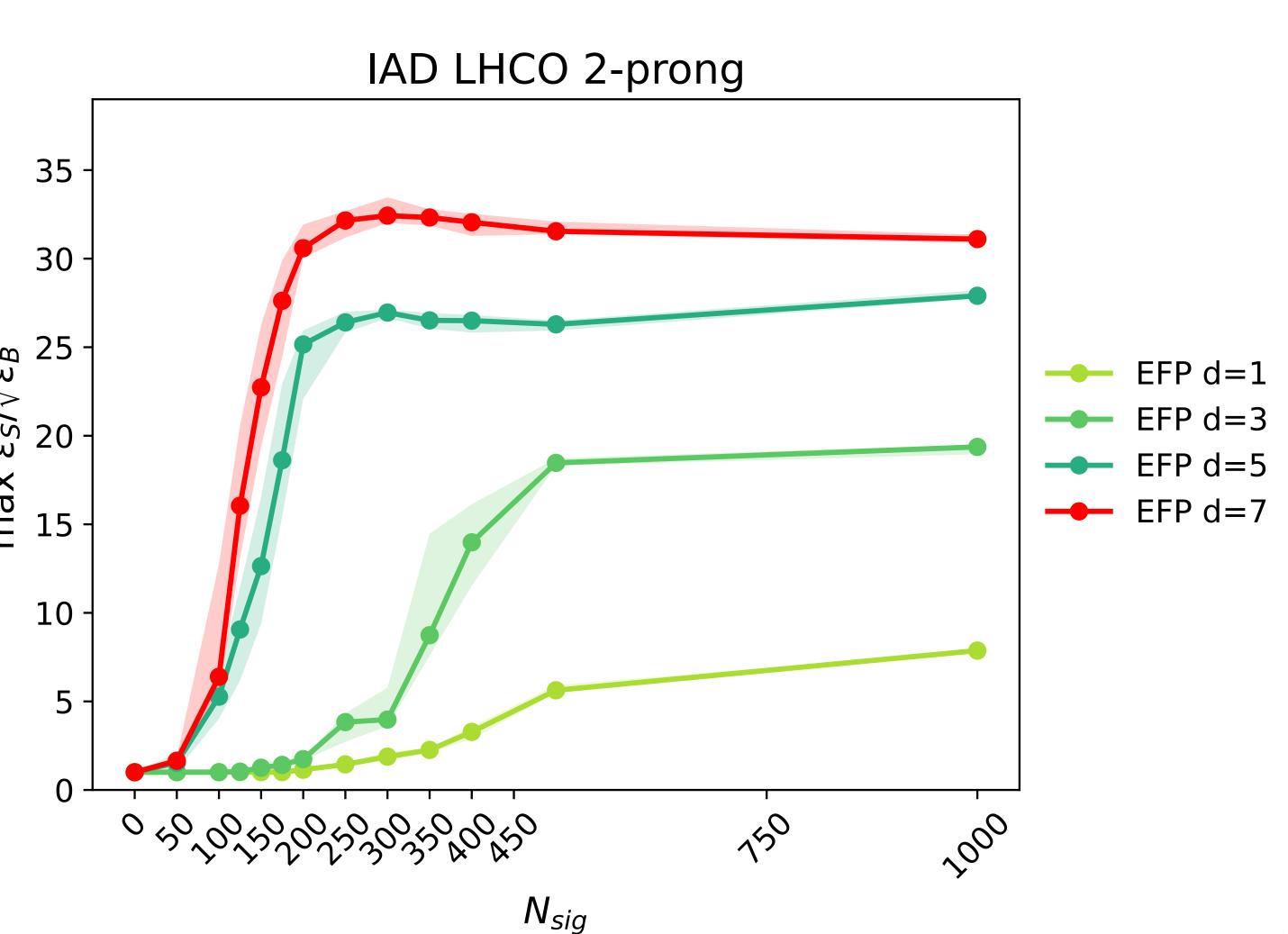
EFP Complete: $\{m_{J_1}, \Delta m_J, \, \text{EFP}_{i,J_1} \, \text{EFP}_{i,J_2} \}$ for $i \in [1, 489]$



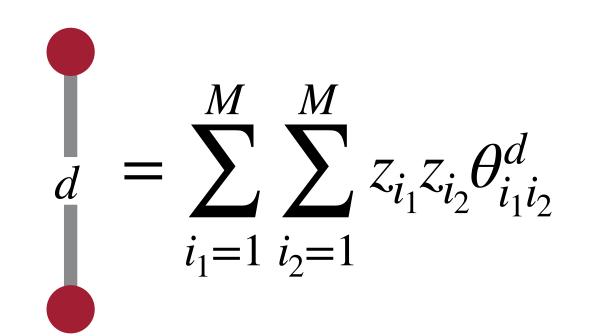


 $= \sum_{i_1=1}^{M} \sum_{i_2=1}^{M} z_{i_1} z_{i_2} \theta_{i_1 i_2}^d$

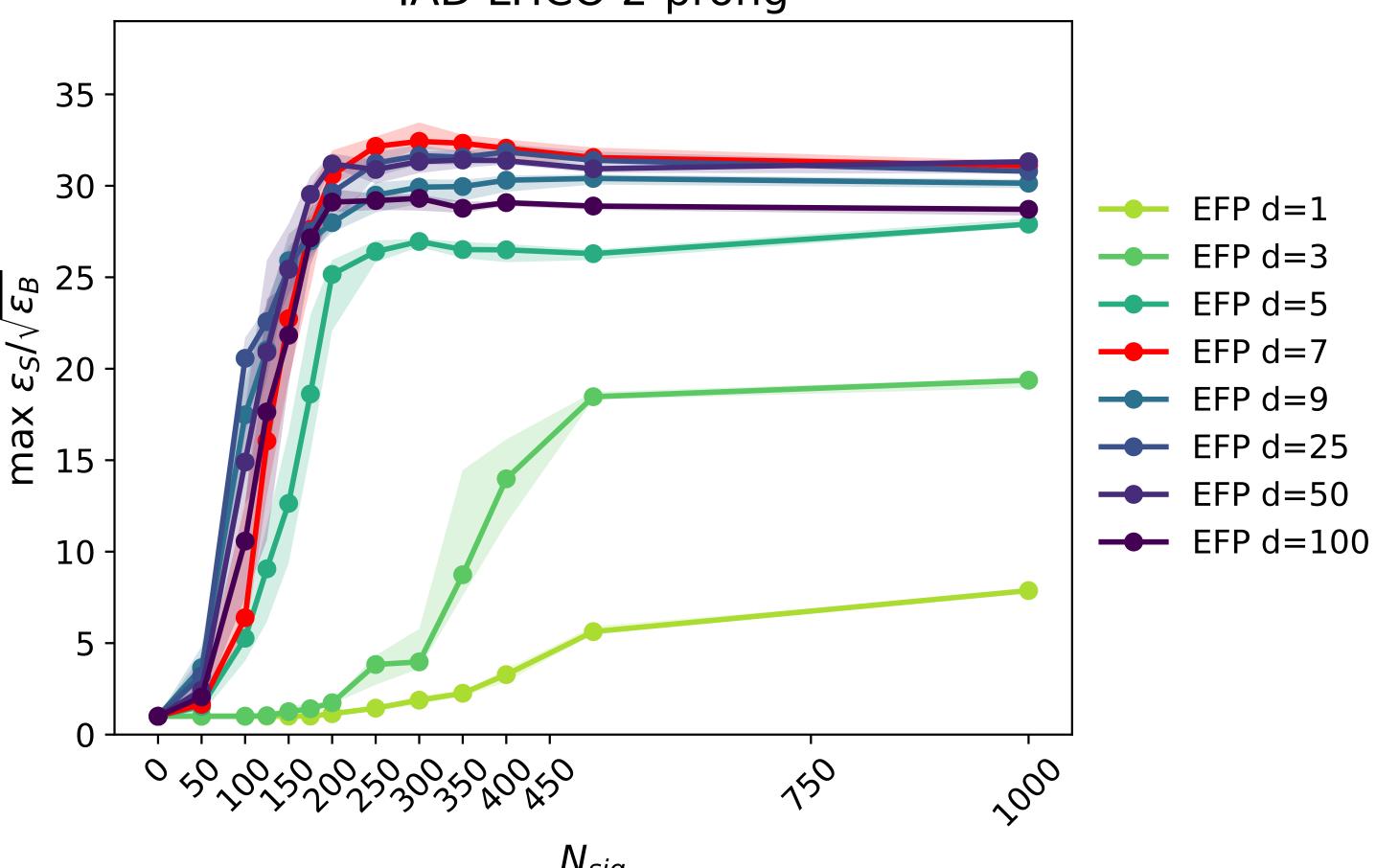
- In the EFP complete set we have EFPs with different structures
- The complexity is limited by computational power
- We are considering all EFPs with 7 edges or more $(d \le 7)$



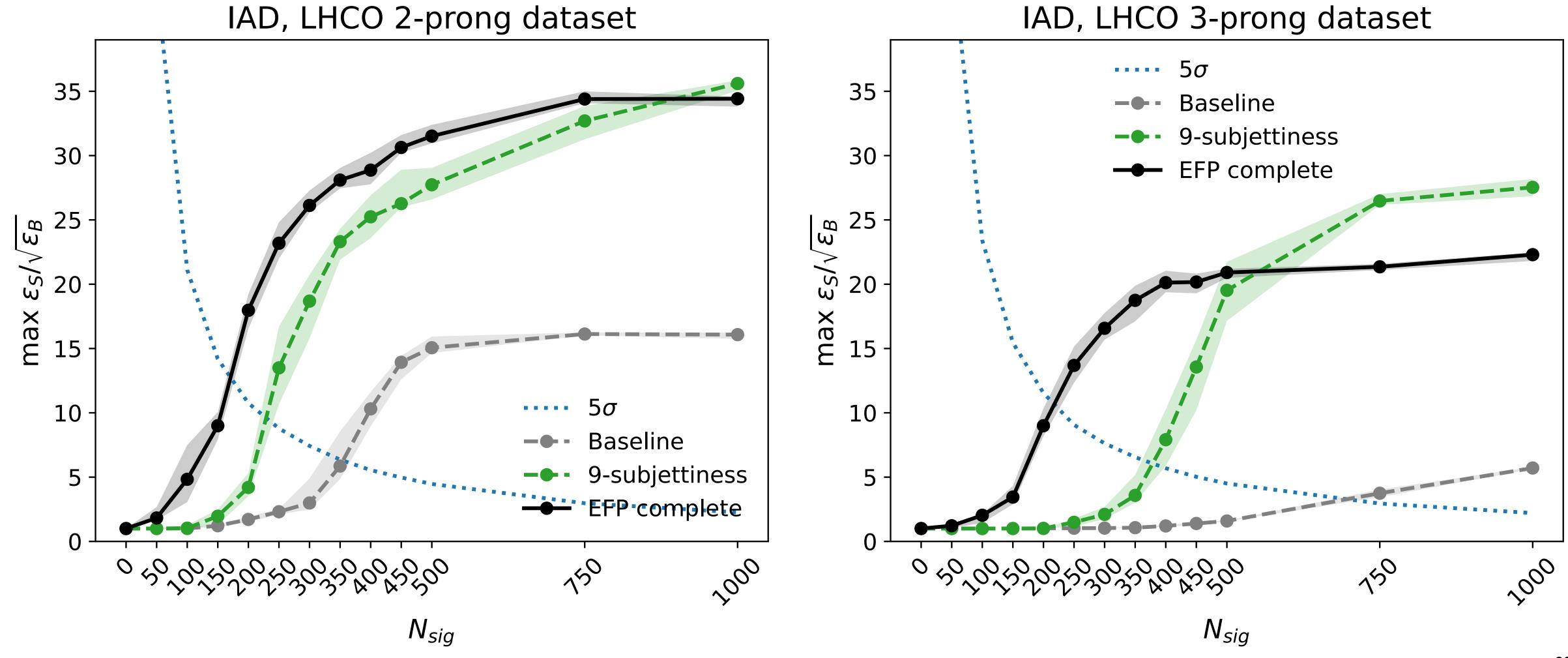
- EFP 7 was is the most expressive in the EFP complete set for the LHCO 2-prong signal
- Higher number of edges do not improve the sensitivity significantly

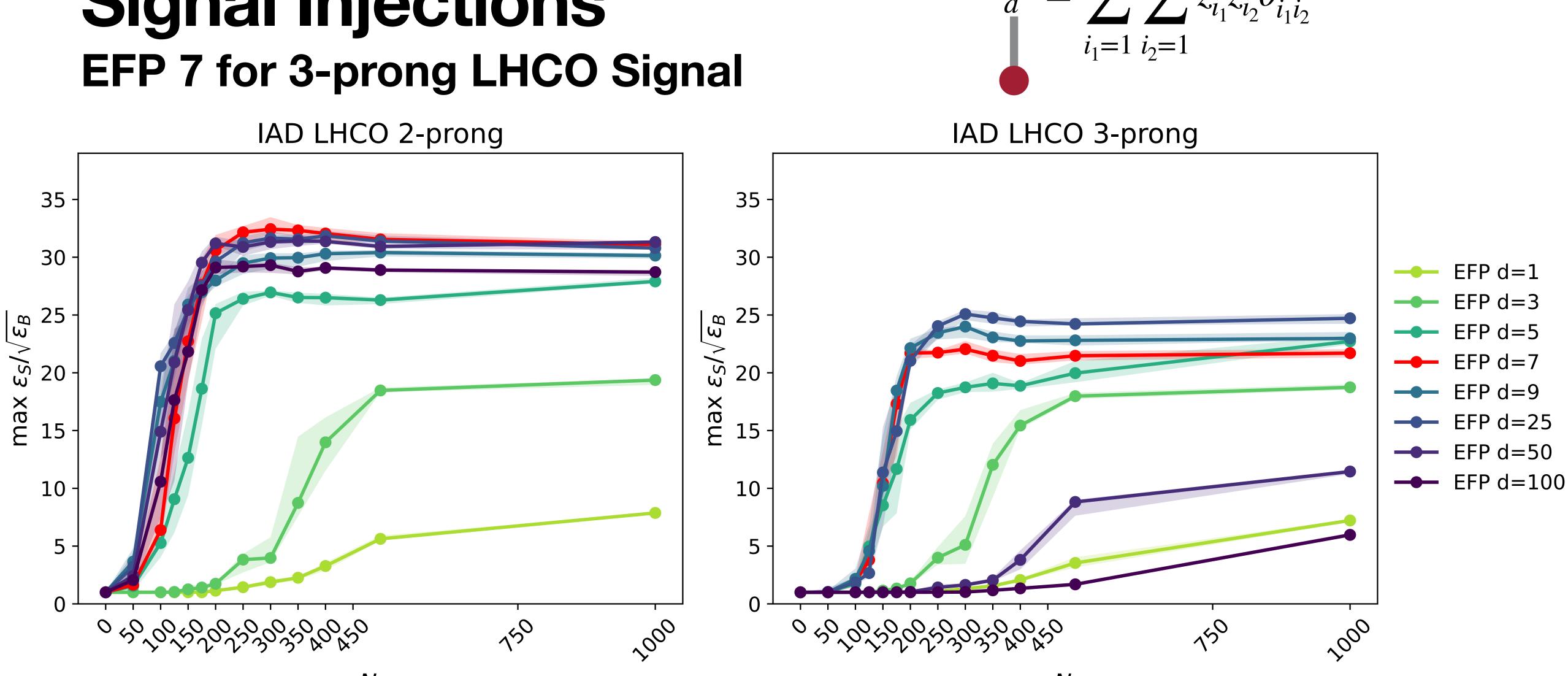


IAD LHCO 2-prong

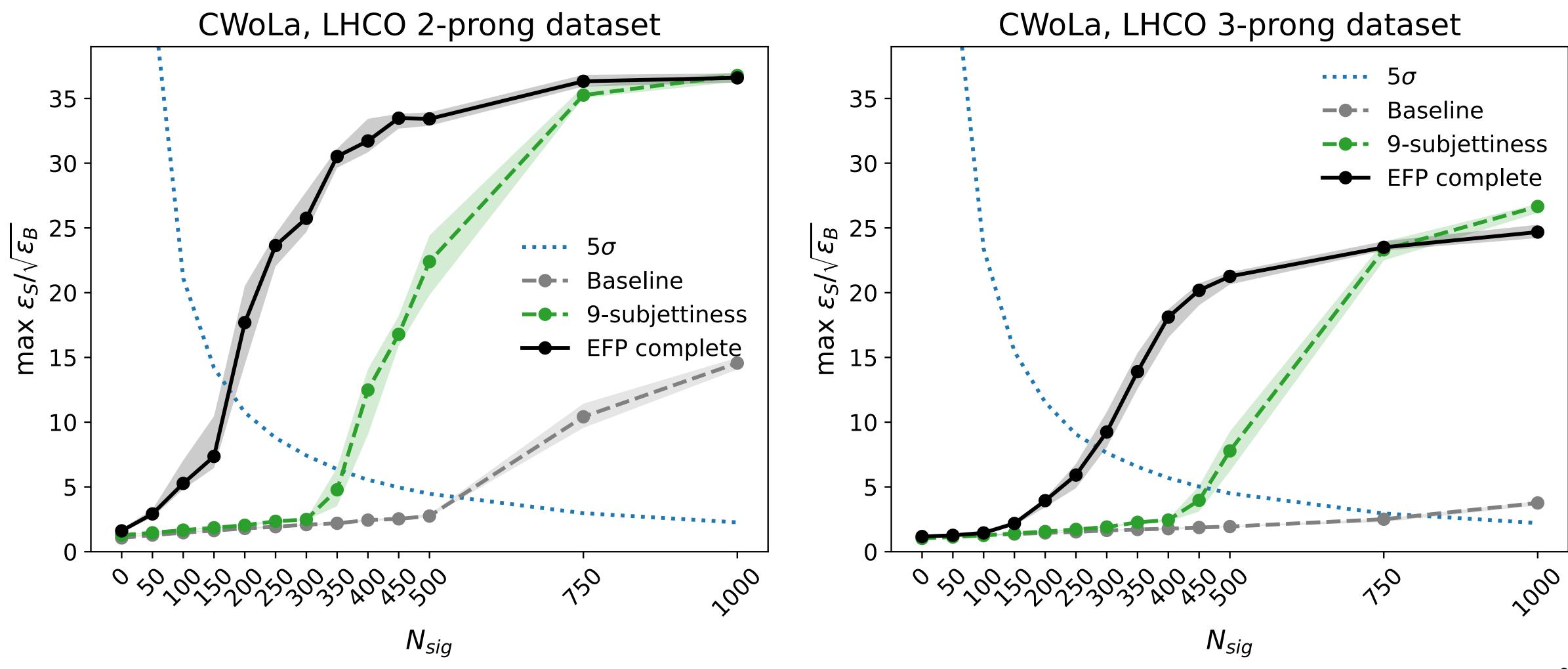


Different Signals



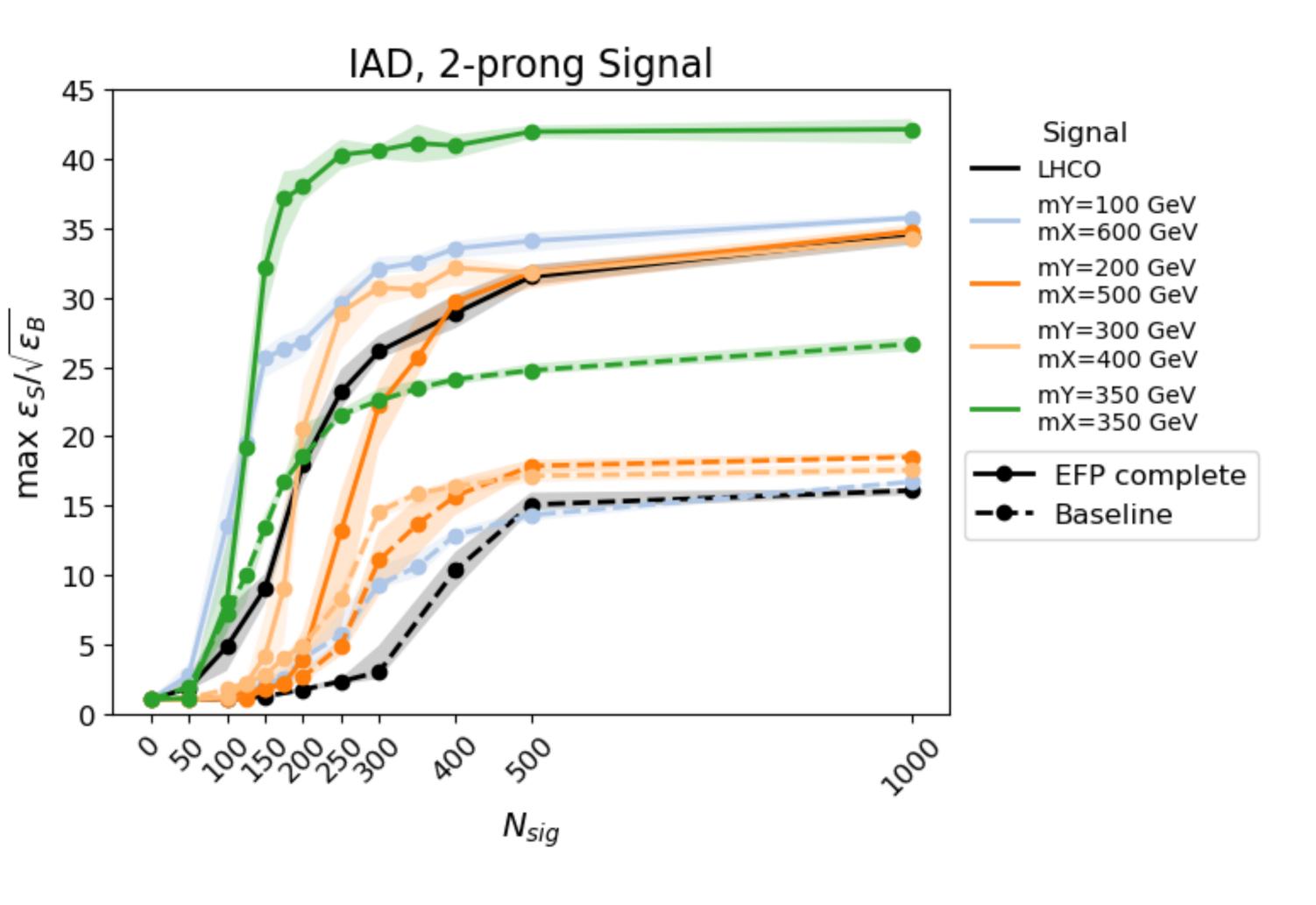


CWoLa Hunting



Changing the Masses

Performance



EFP Complete:

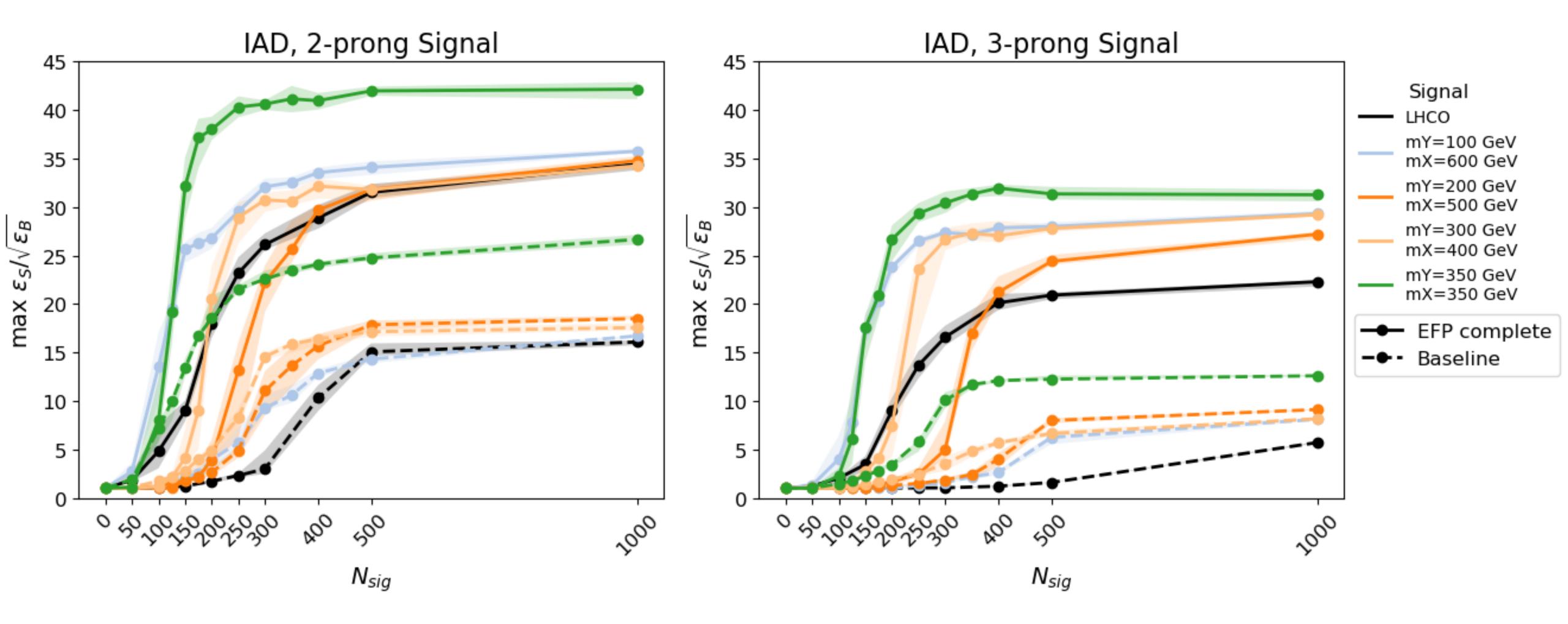
$$\{m_{J_1}, \Delta m_J, EFP_{i,J_1} EFP_{i,J_2}\}$$
 for $i \in [1, 489]$

Baseline:

$$\{m_{J_1}, \Delta m_J, \tau_{21,J_1}^{\beta=1}, \tau_{21,J_2}^{\beta=1}\}$$

Changing the Masses

Performance

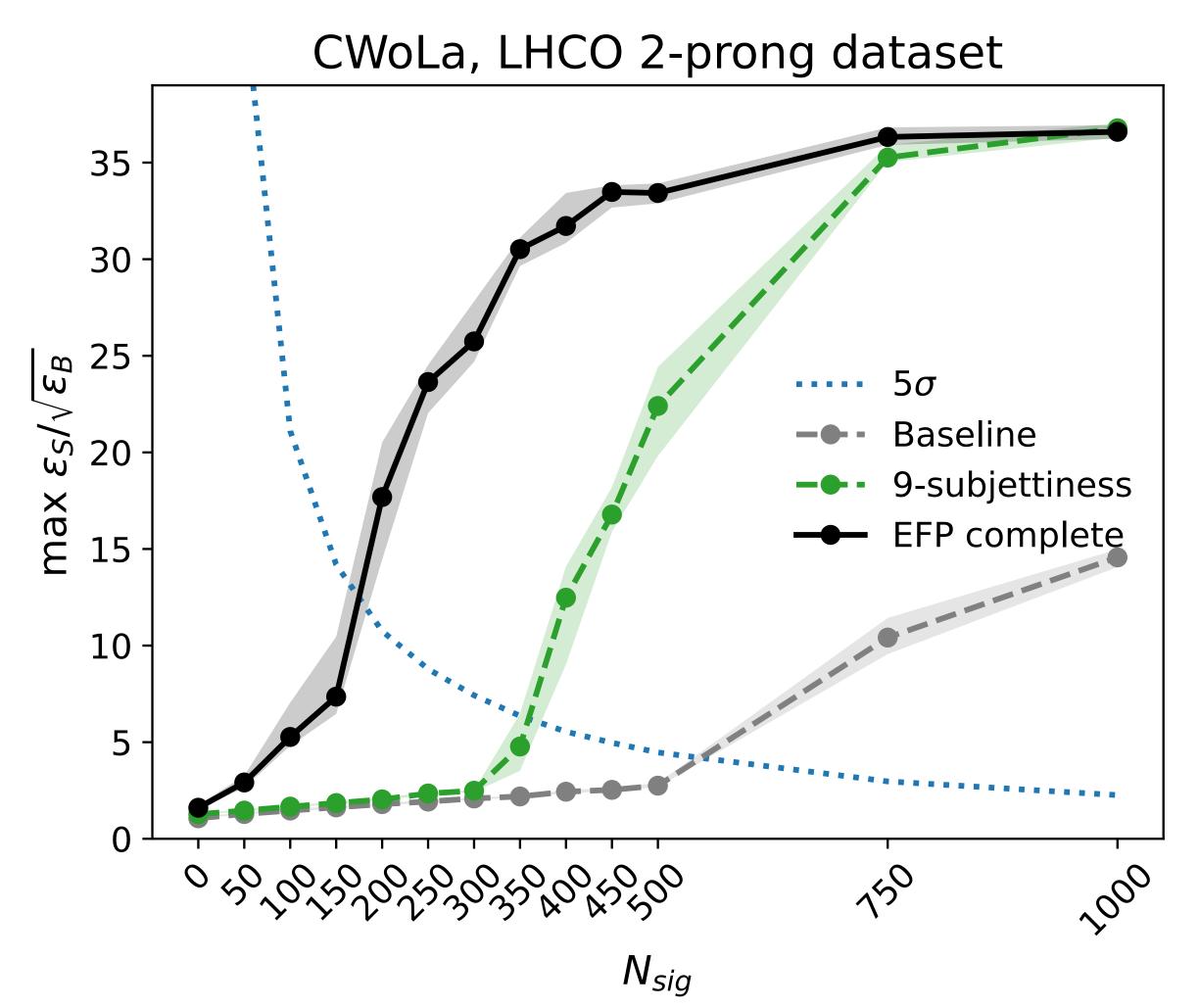


Conclusion

- EFPs are a powerful tool for anomaly detection
- EFPs outperform N-Subjettiness feature sets for low signal injections
- Improvement of sensitivity
- EFPs perform well for different masses

Outlook:

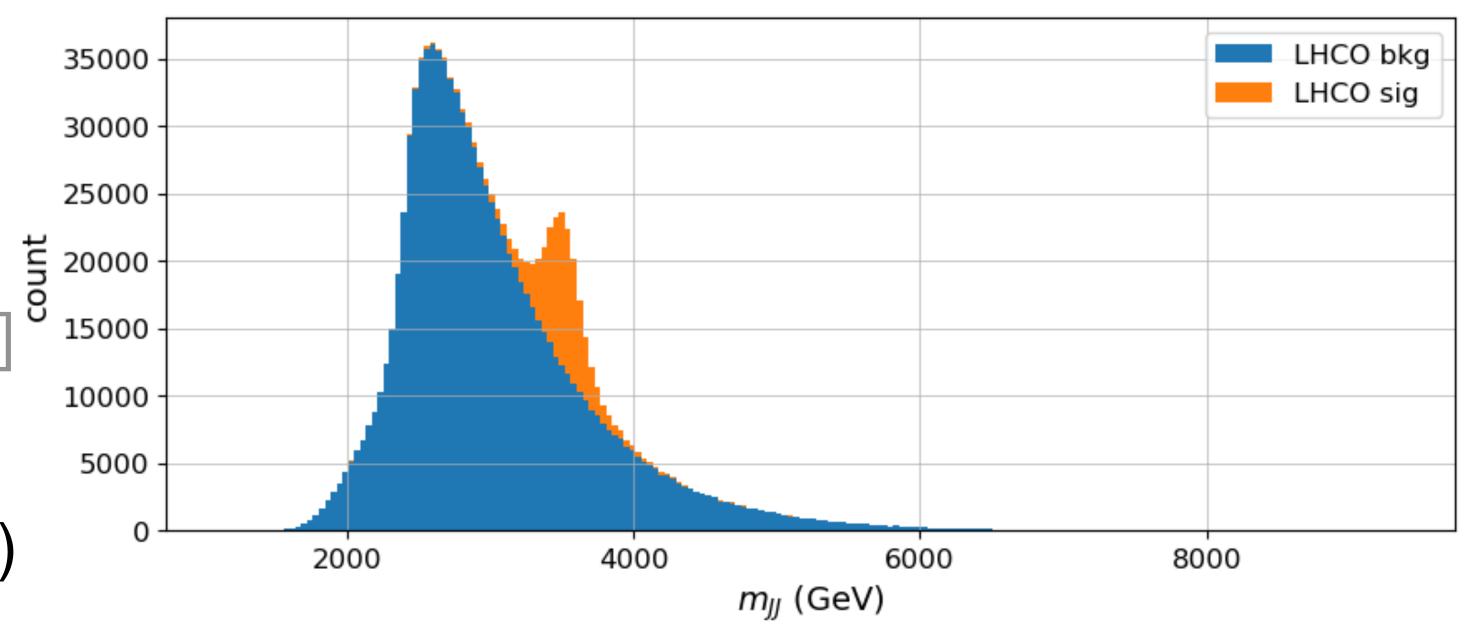
 Investigate more complex signals (e.g. 2+4-prong, 5+5-prong)



Backup

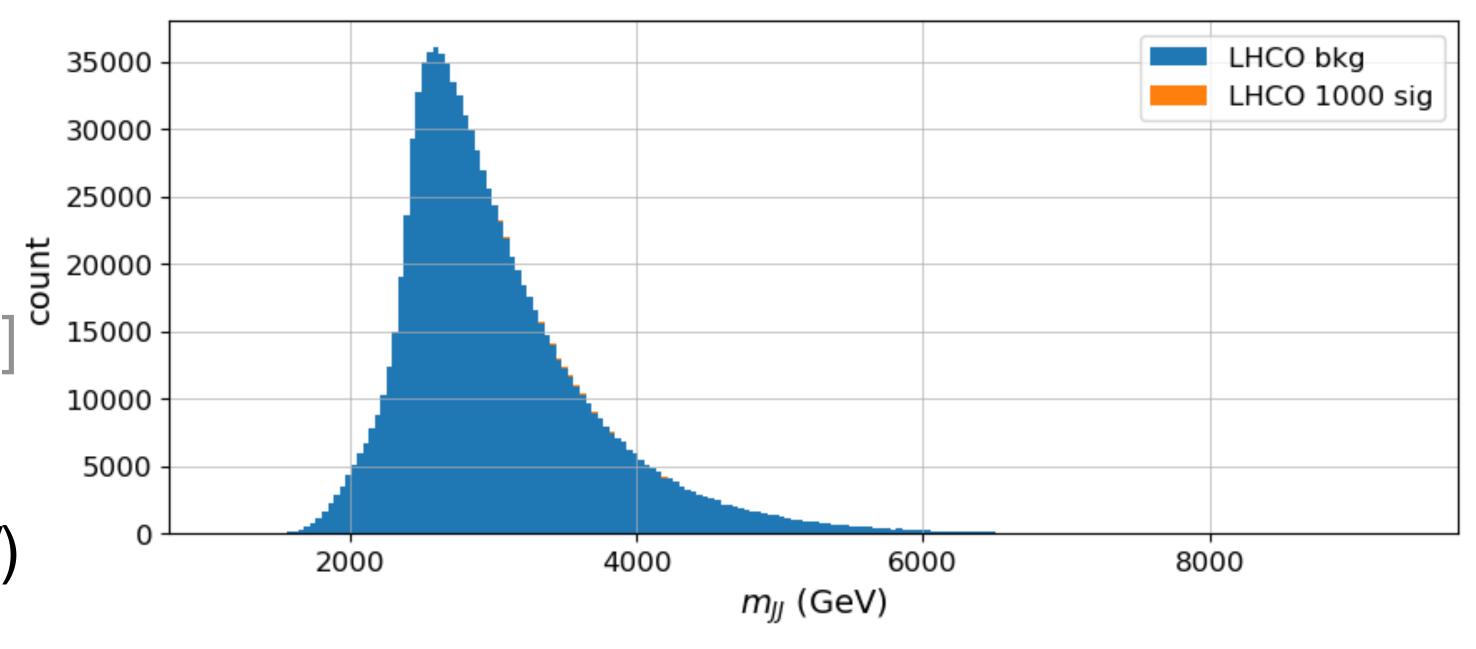
Dijets

- 1.1 million simulated dijet events [2]
 - 1 million QCD background
 - 100k signal
- 610k extra QCD background [3]
- The signal consists of resonant production of a new Z^{\prime} (3.5 TeV)



Dijets

- 1.1 million simulated dijet events [2]
 - 1 million QCD background
 - 100k signal
- 610k extra QCD background [3]
- The signal consists of resonant production of a new Z^{\prime} (3.5 TeV)



Dijets

LHC Olympics 2020 R&D datasets

2-prong signal 100 000 events

$$Z' \to XY$$

$$X \to qq \& Y \to qq$$

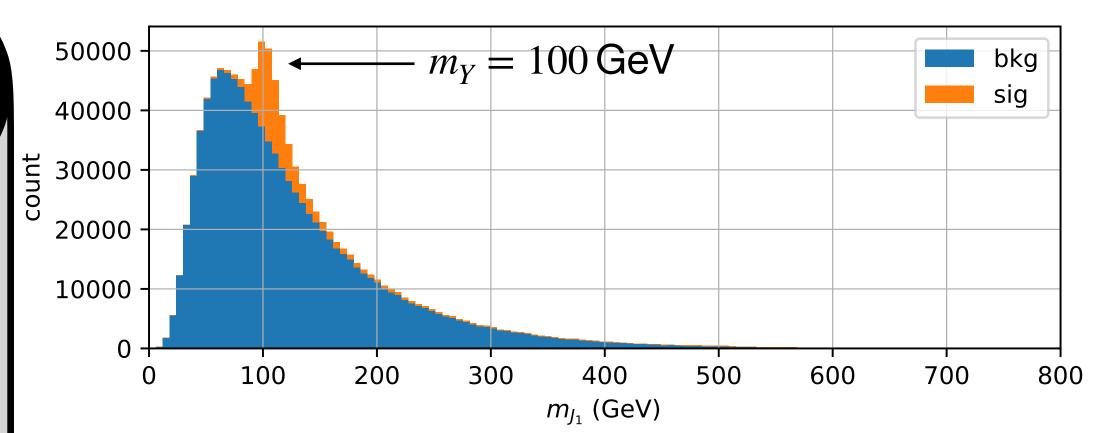
3-prong signal 100 000 events

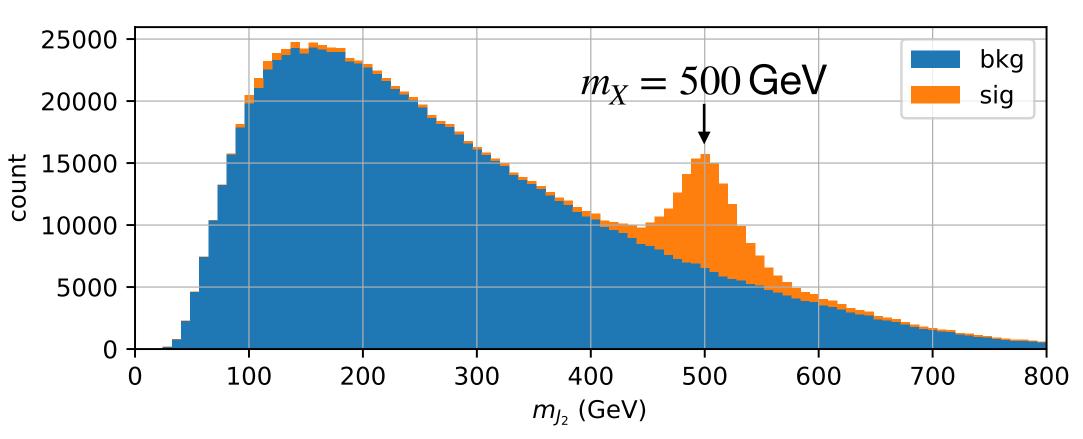
$$Z' \rightarrow XY$$

$$X \rightarrow qqq \& Y \rightarrow qqq$$

Background events
1 000 000 QCD dijets

+ 610 000 extra QCD dijet events with $m_J \in SR$





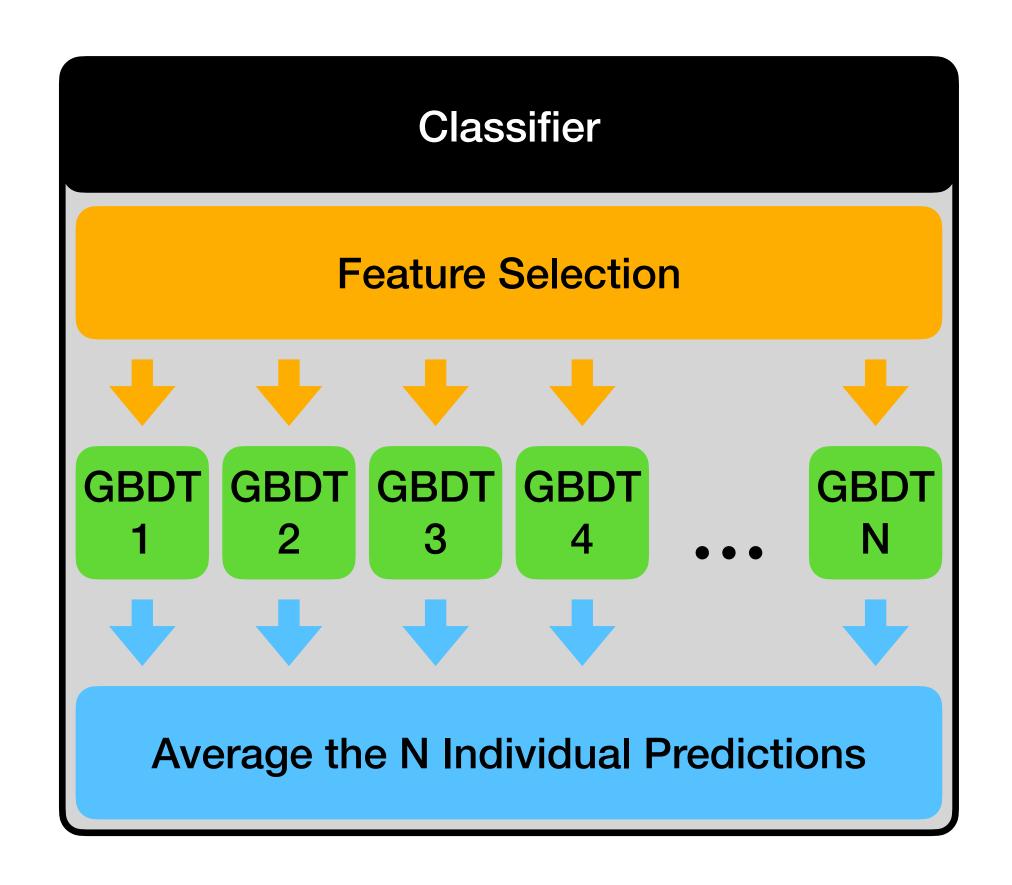
The CMS Signals

Motivation

- We want to test if EFPs are a natural choice for weakly supervised anomaly detection
- Therefore, we are going beyond the LHCO R&D signals
- The CMS Signals are (arXiv:2412.03747v1):
 - $X \rightarrow YY' \rightarrow 4q$ (2+2-prong)
 - $W_{kk} \rightarrow WR \rightarrow 3W$ (2+4-prong)
 - $Z' \rightarrow T'T' \rightarrow tZtZ$ (5+5-prong)
 - $Y \rightarrow HH \rightarrow 4t$ (6+6-prong)

Setup

- Similar to the setup of [7]
- GBDT => HistGradientBoostingClassifier
 - Limit the maximum number of leaves to 31
 - Set the maximum number of iterations to 200
 - Early stoping with a patents of 10
 - Validation fraction of 0.5
- Ensemble over N=50 individual GBDTs



[7] <u>arXiv:2309.13111</u>