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Anomaly Detection
The Search for New Physics

• The Standard Model of Particle 
Physics (SM) is the best theory we 
have so far


• Open questions going beyond the 
Standard Model (BSM)


• Dark energy & dark matter


• Studying BSM is one of the 
missions of the Large Hadron 
Collider (LHC)
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Classification Without Labels (CWoLa)
Weakly Supervised Learning

• Any monotonic function of the optimal 
classifier has the same decision boundaries 
as the optimal classifier 

• Split into signal-enriched and background-
enriched data set


• Is monotonic for  f1 > f2

pi(x) = fi pS (x) + (1 − fi) pB (x)

RCWoLa (x) =
p1 (x)
p2 (x)

=
f1 Roptimal (x) + (1 − f1)
f2 Roptimal (x) + (1 − f2) Classifier
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CWoLa Hunting
Weakly Supervised Learning

• Assuming a resonance in the 
invariant mass


• Defining a signal-enriched (SR) and 
background-enriched (SB) regions


• The Idealised Anomaly Detector (IAD) 


• SB = Pure background located in 
the SR


• The IAD is a more realistic case than 
full supervision 

m

a.u.

SB SR SB

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)

x

pdata(x|m 2 SR)

x

pdata(x|m 2 SB)
= pbg(x|m 2 SB)
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LHC Olympics 2020 R&D Dataset

LHC Olympics 2020 R&D datasets

2-prong signal 
 

 & 
Z′￼→ XY

X → qq Y → qq

3-prong signal 
 

 & 
Z′￼→ XY

X → qqq Y → qqq

Background QCD dijets

mY = 100 GeV 

mX = 500 GeV

9[1] LHC Olympics 2020
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Jet Observables 
Jet Mass

mY = 100 GeV 

mX = 500 GeV
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• Rapidity  




• Azimuthal angle 

 

y =
1
2

log (
E + pz

E − pz )
ϕ = arctan (

py

px )



Jet Observables 

• Probing jets for a specific number of 
subjets N (or less)


• Idea being to cluster the constituents 
of a jet around N jet candidate axis 


• One also often uses the subjettiness 
ration  for τNM =

τN

τM
N > M

N-Subjettiness τN
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What are Energy Flow Polynomials?

[5] arXiv:1712.07124 13
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Mathematical representation
Energy Flow Polynomials (EFPs)

EFPG =
M

∑
i1=1

···
M

∑
iN=1

zi1···ziN ∏
(k,ℓ)∈G

θikiℓ

Energy Flow Polynomial for a graph G 

Energy fraction Angular distance 
between particle  and  ik iℓ

[5] arXiv:1712.07124 14

Hadronic colliders

zi = (
pT,i

pT,J )
κ

pT,J ≡
M

∑
i=1

pT,i

θij = (Δy2
ij + Δϕ2

ij)
β
2

Δyij ≡ yi − yj

Δϕij ≡ ϕi − ϕj

https://arxiv.org/abs/1712.07124


Energy Flow Polynomials (EFPS)

• A multigraph is composed of 
vertices  which are connected 
by multiple edges 


• Only loop-less multigraphs relate 
to EFPs 

(N)
(k, ℓ)

Multigraph correspondence

j ⟺
M

∑
ij=1

zij

k ℓ ⟺ θikiℓ

Vertex correspondence

Edge correspondence 

EFPG =
M

∑
i1=1

···
M

∑
iN=1

zi1···ziN ∏
(k,ℓ)∈G

θikiℓ

Loop Cycle

[5] arXiv:1712.07124 15
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Chromatic number
Energy Flow Polynomials (EFPs)

• The smallest number of colors needed to color vertices so that connected 
vertices do not have the same color


• The chromatic number corresponds to the number of separated prongs for 
which an EFP is first non-vanishing

4-prong2-prong

[5] arXiv:1712.07124 16
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Example: Jet Mass
Energy Flow Polynomials (EFPs)

EFP2 = ≈
2m2

J

p2
T,J
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Example: 1-Subjettiness
Energy Flow Polynomials (EFPs)

EFP1 = =
M

∑
i1=1

M

∑
i2=1

zi1zi2θi1i2
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Example: Different EFPs
Energy Flow Polynomials (EFPs)

EFP2 = =
M

∑
i1=1

M

∑
i2=1

zi1zi2θ
2
i1i2

EFP1 = =
M

∑
i1=1

M

∑
i2=1

zi1zi2θi1i2
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Idealised Anomaly Detector (IAD)



Evaluating Classifiers
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Evaluating Classifiers
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Poisson Significance 
Improvement Characteristic 

(SIC)

SIC ⋅ σpoisson = σcut



Evaluating Classifiers
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Poisson Significance 
Improvement Characteristic 

(SIC)

Baseline:  
{mJ1

, ΔmJ, τ21,J1
, τ21,J2

}

SIC ⋅ σpoisson = σcut

Naive: SIC needed for  5σ



Signal Injections

Baseline:  



9-Subjettiness:  
  

for 

{mJ1
, ΔmJ, τ21,J1

, τ21,J2
}

{mJ1
, ΔmJ, τN,J1

, τN,J2
}

N ≤ 9

24[6] arXiv:2309.13111
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Signal Injections
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EFP Complete: 
 

for 
{mJ1

, ΔmJ, EFPi,J1 EFPi,J2}
i ∈ [1, 489]



Signal Injections
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• {mJ1
, Δm, EFP7,J1

, EFP7,J2
}

EFP7 = =
M

∑
i1=1

M

∑
i2=1

zi1zi2θ
7
i1i27



Signal Injections
EFP 7
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=
M

∑
i1=1

M

∑
i2=1

zi1zi2θ
d
i1i2d

• In the EFP complete set we 
have EFPs with different 
structures 


• The complexity is limited by 
computational power 


• We are considering all EFPs 
with 7 edges or more 
( )d ≤ 7



Signal Injections
EFP 7
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=
M

∑
i1=1

M

∑
i2=1

zi1zi2θ
d
i1i2d

• EFP 7 was is the most 
expressive in the EFP 
complete set for the LHCO 
2-prong signal 


• Higher number of edges do 
not improve the sensitivity 
significantly   



Signal Injections
Different Signals 
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Signal Injections
EFP 7 for 3-prong LHCO Signal
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=
M

∑
i1=1

M

∑
i2=1

zi1zi2θ
d
i1i2d



CWoLa Hunting



Signal Injections
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Changing the Masses 
Performance

33

EFP Complete: 
 for 




Baseline:  

{mJ1
, ΔmJ, EFPi,J1 EFPi,J2}

i ∈ [1, 489]

{mJ1
, ΔmJ, τβ=1

21,J1
, τβ=1

21,J2
}



Changing the Masses 
Performance
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Conclusion
• EFPs are a powerful tool for anomaly 

detection 


• EFPs outperform N-Subjettiness 
feature sets for low signal injections


• Improvement of sensitivity


• EFPs perform well for different masses 


Outlook:

• Investigate more complex signals  

(e.g. 2+4-prong, 5+5-prong)
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Backup



• 1.1 million simulated dijet events [2]


• 1 million QCD background


• 100k signal 


• 610k extra QCD background [3]


• The signal consists of resonant 
production of a new  (3.5 TeV)Z′￼

[2] LHC Olympics 2020, [3] arXiv:2109.00546 

LHC Olympics 2020 R&D Dataset
Dijets
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• 1.1 million simulated dijet events [2]


• 1 million QCD background


• 100k signal 


• 610k extra QCD background [3]


• The signal consists of resonant 
production of a new  (3.5 TeV)Z′￼

LHC Olympics 2020 R&D Dataset
Dijets
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LHC Olympics 2020 R&D Dataset
Dijets

LHC Olympics 2020 R&D datasets

2-prong signal 
100 000 events 

 
 & 

Z′￼→ XY
X → qq Y → qq

3-prong signal 
100 000 events 

 
 & 

Z′￼→ XY
X → qqq Y → qqq

Background events  
1 000 000 QCD dijets 

+ 610 000 extra QCD dijet events with SRmJ ∈

mY = 100 GeV 

mX = 500 GeV

39[2] LHC Olympics 2020

https://lhco2020.github.io/homepage/


The CMS Signals
Motivation

• We want to test if EFPs are a natural choice for weakly supervised anomaly detection 


• Therefore, we are going beyond the LHCO R&D signals 


• The CMS Signals are (arXiv:2412.03747v1):


•  (2+2-prong)


•  (2+4-prong)


•  (5+5-prong)


•  (6+6-prong)

X → YY′￼ → 4q

Wkk → WR → 3W

Z′￼ → T′￼T′￼ → tZtZ

Y → HH → 4t

https://arxiv.org/abs/2412.03747


Setup

• Similar to the setup of [7]


• GBDT => HistGradientBoostingClassifier


• Limit the maximum number of leaves to 31


• Set the maximum number of iterations to 
200


• Early stoping with a patents of 10


• Validation fraction of 0.5


• Ensemble over N=50 individual GBDTs

Classifier

GBDT 
1

GBDT 
2

GBDT 
3

GBDT 
4

GBDT 
N

Average the N Individual Predictions

Feature Selection
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