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Motivation for dark sectors
Given the complexity of visible matter, it seems 
preposterous to require dark matter to be simple

 Intriguing possibility: Dark matter particles do not 
appear in isolation, but together with other 
(unstable) particles

 The interactions between these particles are (much) 
stronger than their couplings to the SM

Example:
 Extended gauge groups:

DM charged under new (Abelien or non-Abelian) gauge group, while SM particles are uncharged
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Spontaneous mass generation
 The mass of visible matter is generated spontaneously

– Electron mass generated through Higgs field (electroweak symmetry breaking)
– Proton mass generated through strong interactions (chiral symmetry breaking)

 What if something similar happens for the dominant form of mass (i.e. dark matter)?

Example:
 Dark Higgs mechanism:

DM particle obtains its mass from the vacuum expectation value of a (SM singlet) scalar field

 In a conventional Higgs mechanism, the symmetry breaking scale is set “by hand”

 This talk: Consider the case where the scale arises from loops via dimensional transmutation
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 Consider U(1)’ gauge extension of the Standard Model and minimal particle content:
– U(1)’ gauge boson (called dark photon)
– Complex scalar field Φ with QΦ = 1
– Two left-handed fermions χ1,2 with Q1 = ½ and Q2 = -½

 Charges chosen such that the model is anomaly-free and there exist Majorana-like Yukawa 
interactions:

A simple dark sector model



22 July 2025 Simulation-based inference for particle physics5 Felix Kahlhoefer
Institute for Astroparticle Physics

Conformal symmetry
 Assume that the dark sector has a conformal symmetry at the classical level:

 Invariance under rescaling

 No dimensionful couplings, no mass terms!
 Scalar potential given by

 Although the Lagrangian has no explicit scale, the β function for λ does not vanish!
 Scale dependence λ(Λ) of the potential at the quantum level
 Spontaneous symmetry breaking
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Effective potential
 At tree level: Potential minimised for Φ = 0
 Assume nevertheless that scalar field takes homogeneous and static background value Φb 

which breaks both U(1)’ and conformal symmetry
 Expand around background:
 Radiative corrections give Coleman-Weinberg potential:

with η = 1 (η = –1) for bosons (fermions), C = 3/2 (C = 5/6) for scalars/fermions (vectors) and
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Coleman-Weinberg mechanism
 Adding tree-level potential and CW potential with renormalisation condition                                  

gives the one-loop effective potential at scale Λ

Remember: Running coupling λ = λ(Λ)

 Veff has maximum at Φb = 0 and minimum at Φb = v with

The appropriate scale to evaluate this expression is Λ = v, which leads to
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Dimensional transmutation
 The classically scale-invariant potential V(Φ) depends on the renormalisation scale at the 

quantum level, leading to the generation of a dimensionful scale v
 Has been studied in the past in the context of the hierarchy problem

 Trade λ(v) for v as one of the fundamental parameters of the model (together with g and y)

Example: v = 100 MeV



22 July 2025 Simulation-based inference for particle physics9 Felix Kahlhoefer
Institute for Astroparticle Physics

Finite-temperature effective potential
 So far: Calculation in vacuum (T=0)
 In plasma: Temperature gives additional dimensionful scale

 Particles obtain plasma mass (like Debye mass of plasmons) proportional to T
 Corrections to effective potential:

 Note: Infrared divergence for bosonic modes cancelled by “daisy resummation”
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Phase transition
 Key result: Scalar field obtains mass term

 At sufficiently high temperatures, Φb = 0 becomes global minimum
 U(1)’ symmetry is restored

 There exists a critical temperature Tc when the global minimum switches to Φb ≠ 0
 Two possibilities: 

Second-order phase transition First-order phase transition
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First-order phase transition
 Potential barrier between true minimum at Φb ≠ 0 and false minimum at Φb = 0

 False minimum is metastable
 Field remains at Φb = 0 even for T < Tc (supercooling)
 Transition to the true vacuum via bubble nucleation
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A closer look at bubble nucleation
 A bubble is a localised transition from 

Φb ≠ 0 (inside) to Φb = 0 (outside)

 Continuity of field implies large potential energy for the bubble wall (or large contribution to 
total energy from steep gradients for thin walls)
 Need to minimize surface area (  spherical symmetry)→
 Need sufficiently small ratio surface/volume (  minimal radius)→

 inside wall outside
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Bounce action
 The optimal field configuration minimises the O(3)-symmetric Euclidean bounce action

 For this minimal action, we can calculate the corresponding bubble nucleation rate (number of 
bubbles per time and volume)

 with A(T) ~ T4

 For constant temperature, Γ(T)-1 quantifies the time it takes the phase transition to complete

 But in an expanding universe, the temperature decreases with time
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Bubble nucleation temperature
 As the temperature decreases, potential barrier becomes smaller

 Bounce action decreases rapidly
 Sudden enhancement of bubble nucleation

 Bubbles start expanding, with bubble walls 
often reaching relativistic velocities vw
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Completion of the phase transition
 The expanding bubbles eventually collide, creating a continuous path of Φb ≠ 0 (percolation)

 Latent heat (~ difference in potential energy 
ΔVeff between metastable and true minimum)    
is released into the plasma

 Consequence 1: Reheating of thermal bath
 Non-standard cosmological evolution
 Interesting for dark matter production

see talk by Henda

 Consequence 2: Generation of plasma sound waves
 Cosmological source of gravitational waves
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Why study a classically conformal model?
 Bounce action changes very slowly with temperature
 Huge supercooling α ~ ΔVeff / Etot

 Large separation R between bubbles 
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→ Larger gravitational wave signal
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Pulsar timing arrays
 Pulsars: Astrophysical objects emitting extremely 

regular signals

 Pulsar timing: Observe a pulsar over several years 
to search for periodic shift of arrival times
 Indication for an oscillating distortion of space-time 

(i.e. gravitational waves)

 Pulsar timing array: Observe many such pulsars 
simultaneously to correlate arrival times from 
different directions
 Eliminate systematics and confirm gravitational 

wave origin of signal
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Evidence for nano-Hertz gravitational waves
 Result: Clear indication for 

oscillating arrival times with 
frequencies in the nHz range

 Correlations consistent with 
expectation and preferred over 
uncorrelated signal at 3–4σ

 Simplest explanation: Mergers of supermassive black 
hole binaries

 But: signal larger than expected and different shape!
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 Spontaneous symmetry breaking can 
happen through a first-order phase 
transition

 Strong supercooling possible for 
classically conformal dark sector

 Potential explanation of gravitatational 
wave signal observed by pulsar timing 
arrays

 Peak frequency around 10 nHz requires 
dark Higgs vev of order 100 MeV

First-order phase transition

Balan, FK et al., arXiv:2502.19478
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Challenge 1: Coupling dark and visible sector
 Calculation assumes equilibrium of the dark sector with Standard Model thermal bath

 Need some coupling between the two sectors

 Mixed term in the scalar potential |H|2 |Φ|2 
spoils conformal symmetry after EWSB

 Simplest solution: Kinetic mixing between 
U(1)’ gauge boson and hypercharge: 

Search for invisible decays of dark photons 
produced in collisions of SM particles
(Leading constraints: BaBar & NA64)

FIPs 2022 Workshop Report, arXiv:2305.01715
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Challenge 2: Depleting the dark sector
 After the phase transition, the dark sector 

dominates the energy density of the universe

 To recover standard cosmology, need to 
transfer this energy to SM particles

 Dark photon interactions are too weak to fully 
deplete the dark sector

 Non-negligible abundance of decoupled dark 
Higgs bosons remains after BBN

 Decay into e+e– via dark-photon loops:

Balan, FK et al., arXiv:2502.19478
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Challenge 3: Dark matter relic density
 After symmetry breaking, the chiral fermions χ1,2  combine into a Dirac fermion χ
 This fermion is stable and could be a viable DM candidate

 Cosmological abundance set by freeze-out mechanism:

 For direct annihilation of DM into dark Higgs bosons:

 First-order phase transition requires dark sector couplings of order unity: y ~ 1

Observed DM relic density implies vΦ ~ TeV

Perfect for LISA, but not for pulsar timing arrays

Need to find a way to suppress annihilation cross section
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Detailed evolution
 Reproducing DM relic density requires mχ 

and mΦ to be very close
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Results

 Possible to fit PTA signal and 
reproduce observed DM relic 
abundance while satisfying bounds 
from dark photon searches

 Abundance and lifetime of dark 
Higgs bosons small enough to 
comply with BBN constraints

 Well-defined allowed parameter 
regions

 → Predictions for future searches

Balan, FK et al., arXiv:2502.19478
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Results

Model can be tested with 
future searches for invisibly 
decaying dark photons
Balan, FK et al., arXiv:2502.19478
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Conclusions
 The mass scale of dark matter may be generated via the Coleman-Weinberg mechanism

 Dimensional transmutation from a classically conformal (i.e. scale-invariant) dark sector
 Spontaneous breaking of a U(1)’ gauge symmetry via a dark Higgs mechanism

 Thermal corrections restore the gauge symmetry at high temperatures
 Expansion of the universe triggers a phase transition
 Potential barrier allows for supercooling and bubble nucleation

 A strong first-order phase transition generates gravitational waves
 For a sub-GeV dark sector, these gravitational waves are in the nano-Hertz range
 Potential expanation of signal seen by pulsar timing arrays

 Viable model: Conformal dark sector coupled to the Standard Model via kinetic mixing
 Provides a viable dark matter candidate
 Satisfies cosmological and laboratory constraints on dark Higgs bosons and dark photons
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