Classically conformal dark sectors

Felix Kahlhoefer
Institute for Astroparticle Physics (IAP)

CRC TRR 257 Young Scientists Meeting Heidelberg, 22 July 2025

Motivation for dark sectors

Given the complexity of visible matter, it seems preposterous to require dark matter to be simple

- Intriguing possibility: Dark matter particles do not appear in isolation, but together with other (unstable) particles
- The interactions between these particles are (much) stronger than their couplings to the SM

Example:

- Extended gauge groups:
 - → DM charged under new (Abelien or non-Abelian) gauge group, while SM particles are uncharged

Spontaneous mass generation

- The mass of visible matter is generated spontaneously
 - Electron mass generated through Higgs field (electroweak symmetry breaking)
 - Proton mass generated through strong interactions (chiral symmetry breaking)
- What if something similar happens for the dominant form of mass (i.e. dark matter)?

Example:

- Dark Higgs mechanism:
 - → DM particle obtains its mass from the vacuum expectation value of a (SM singlet) scalar field
- In a conventional Higgs mechanism, the symmetry breaking scale is set "by hand"
- This talk: Consider the case where the scale arises from loops via dimensional transmutation

A simple dark sector model

- Consider U(1)' gauge extension of the Standard Model and minimal particle content:
 - U(1)' gauge boson (called *dark photon*)
 - Complex scalar field Φ with $Q_{\Phi} = 1$
 - Two left-handed fermions $\chi_{1,2}$ with $Q_1 = \frac{1}{2}$ and $Q_2 = -\frac{1}{2}$
- Charges chosen such that the model is anomaly-free and there exist Majorana-like Yukawa interactions:

$$\mathcal{L} = |D_{\mu}\Phi|^{2} - \frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \bar{\chi}_{1}i\not D\chi_{1} + \bar{\chi}_{2}i\not D\chi_{2} - \left(\frac{y_{1}}{2}\Phi\bar{\chi}_{1}^{c}\chi_{1} + \frac{y_{2}}{2}\Phi^{*}\bar{\chi}_{2}^{c}\chi_{2} + \text{h.c.}\right) - V(\Phi).$$

Conformal symmetry

- Assume that the dark sector has a conformal symmetry at the classical level:
 - → Invariance under rescaling

$$x^{\mu} \to \alpha x^{\mu}$$
, $\Phi(x) \to \alpha^{-1} \Phi(\alpha x)$, $A'_{\mu}(x) \to \alpha^{-1} A'_{\mu}(\alpha x)$ and $\chi(x) \to \alpha^{-3/2} \chi(\alpha x)$

- No dimensionful couplings, no mass terms!
- → Scalar potential given by

$$V(\Phi) = \lambda (\Phi^* \Phi)^2$$

- Although the Lagrangian has no explicit scale, the β function for λ does not vanish!
 - \rightarrow Scale dependence $\lambda(\Lambda)$ of the potential at the quantum level
 - Spontaneous symmetry breaking

Effective potential

- At tree level: Potential minimised for Φ = 0
- Assume nevertheless that scalar field takes homogeneous and static background value Φ_b which breaks both U(1)' and conformal symmetry
- Expand around background: $\Phi = (\phi_b + \phi + i\varphi)/\sqrt{2}$
- Radiative corrections give Coleman-Weinberg potential:

$$V_{\text{CW}}(\phi_{\text{b}}) = \sum_{a} \eta_{a} g_{a} \frac{m_{a}^{4}(\phi_{\text{b}})}{64\pi^{2}} \left[\log \frac{m_{a}^{2}(\phi_{\text{b}})}{\bar{\mu}^{2}} - C_{a} \right]$$

with $\eta = 1$ ($\eta = -1$) for bosons (fermions), C = 3/2 (C = 5/6) for scalars/fermions (vectors) and

$$m_{\phi}^2(\phi_{\rm b}) = 3\lambda\phi_{\rm b}^2$$
, $m_{\varphi}^2(\phi_{\rm b}) = \lambda\phi_{\rm b}^2$, $m_{A'}^2(\phi_{\rm b}) = g^2\phi_{\rm b}^2$, $m_{\chi}(\phi_{\rm b}) = \frac{y\phi_{\rm b}}{\sqrt{2}}$

Coleman-Weinberg mechanism

• Adding tree-level potential and CW potential with renormalisation condition $m_{\phi}(\phi_{\rm b}=0)=0$ gives the one-loop effective potential at scale Λ

$$V_{\text{eff}}(\phi_{\text{b}}, T = 0) = \frac{\lambda}{4}\phi_{\text{b}}^4 + \sum_{a} \frac{\eta_a g_a}{64\pi^2} m_a^4(\phi_{\text{b}}) \left[\log\left(\frac{\phi_{\text{b}}^2}{\Lambda^2}\right) - \frac{25}{6} \right]$$

Remember: Running coupling $\lambda = \lambda(\Lambda)$

• V_{eff} has maximum at $\Phi_b = 0$ and minimum at $\Phi_b = v$ with

$$\lambda = \sum_{a} \frac{g_a \eta_a}{48\pi^2} \frac{m_a^4(v)}{v^4} \left[11 - 3\log\left(\frac{v^2}{\Lambda^2}\right) \right]$$

The appropriate scale to evaluate this expression is $\Lambda = v$, which leads to

$$\lambda = 11 \sum_{a} \frac{g_a \eta_a}{48\pi^2} \frac{m_a^4(v)}{v^4} = \frac{11}{48\pi^2} \left(10\lambda^2 + 3g^4 - y^4 \right)$$

Simulation-based inference for particle physics

Dimensional transmutation

- The classically scale-invariant potential $V(\Phi)$ depends on the renormalisation scale at the quantum level, leading to the generation of a dimensionful scale v
 - → Has been studied in the past in the context of the hierarchy problem
- Trade $\lambda(v)$ for v as one of the fundamental parameters of the model (together with g and y)

Example: v = 100 MeV

Finite-temperature effective potential

- So far: Calculation in vacuum (T=0)
- In plasma: Temperature gives additional dimensionful scale
 - → Particles obtain plasma mass (like Debye mass of plasmons) proportional to T
 - Corrections to effective potential:

$$V_T(\phi_{\rm b}) = \frac{T^4}{2\pi^2} \sum_a \eta_a g_a J_{\rm b/f} \left(\frac{m_a^2(\phi_{\rm b})}{T^2} \right)$$

• Note: Infrared divergence for bosonic modes cancelled by "daisy resummation"

$$V_{\text{daisy}}(\phi_{\text{b}}) = -\frac{T}{12\pi} \sum_{a=\phi,\varphi,A'_{\text{L}}} g_a \left[(m_a^2(\phi_{\text{b}}) + \Pi_a(T))^{3/2} - (m_a^2(\phi_{\text{b}}))^{3/2} \right]$$

Simulation-based inference for particle physics

Phase transition

- Key result: Scalar field obtains mass term $\Pi_{\phi} = \left(\frac{\lambda}{3} + \frac{y^2}{12} + \frac{g^2}{4}\right) T^2$
 - \rightarrow At sufficiently high temperatures, $\Phi_b = 0$ becomes global minimum
 - → U(1)' symmetry is restored
- There exists a critical temperature T_c when the global minimum switches to $\Phi_b \neq 0$
- Two possibilities:

Second-order phase transition

22 July 2025

First-order phase transition

First-order phase transition

Potential barrier between true minimum at $\Phi_b \neq 0$ and false minimum at $\Phi_b = 0$

Simulation-based inference for particle physics

- → False minimum is metastable
- ⇒ Field remains at $\Phi_b = 0$ even for T < T_c (supercooling)
- Transition to the true vacuum via bubble nucleation

A closer look at bubble nucleation

• A bubble is a localised transition from $\Phi_b \neq 0$ (inside) to $\Phi_b = 0$ (outside)

- Continuity of field implies large potential energy for the bubble wall (or large contribution to total energy from steep gradients for thin walls)
 - → Need to minimize surface area (→ spherical symmetry)
 - → Need sufficiently small ratio surface/volume (→ minimal radius)

Bounce action

The optimal field configuration minimises the O(3)-symmetric Euclidean bounce action

$$S_3(T) = \int d^3x \left[\frac{\left(\nabla \bar{\phi}_{b}\right)^2}{2} + V_{\text{eff}}(\bar{\phi}_{b}, T) \right]$$

 For this minimal action, we can calculate the corresponding bubble nucleation rate (number of bubbles per time and volume)

$$\Gamma(T) = A(T) \exp \left[-\frac{S_3(T)}{T} \right]$$
 with A(T) ~ T⁴

- For constant temperature, $\Gamma(T)^{-1}$ quantifies the time it takes the phase transition to complete
- But in an expanding universe, the temperature decreases with time

Bubble nucleation temperature

- As the temperature decreases, potential barrier becomes smaller
 - → Bounce action decreases rapidly
 - Sudden enhancement of bubble nucleation
- Bubbles start expanding, with bubble walls often reaching relativistic velocities v_w

Completion of the phase transition

- The expanding bubbles eventually collide, creating a continuous path of $\Phi_b \neq 0$ (percolation)
- Latent heat (\sim difference in potential energy ΔV_{eff} between metastable and true minimum) is released into the plasma
- Consequence 1: Reheating of thermal bath
 - → Non-standard cosmological evolution
 - → Interesting for dark matter production see talk by Henda
- Consequence 2: Generation of plasma sound waves
 - Cosmological source of gravitational waves

Why study a classically conformal model?

- Bounce action changes very slowly with temperature
- Huge supercooling $\alpha \sim \Delta V_{eff} / E_{tot}$
- Large separation R between bubbles

Larger gravitational wave signal

Pulsar timing arrays

- Pulsars: Astrophysical objects emitting extremely regular signals
- Pulsar timing: Observe a pulsar over several years to search for periodic shift of arrival times
 - → Indication for an oscillating distortion of space-time (i.e. gravitational waves)
- Pulsar timing array: Observe many such pulsars simultaneously to correlate arrival times from different directions
 - Eliminate systematics and confirm gravitational wave origin of signal

Evidence for nano-Hertz gravitational waves

- Result: Clear indication for oscillating arrival times with frequencies in the nHz range
- Correlations consistent with expectation and preferred over uncorrelated signal at 3-4σ

- Simplest explanation: Mergers of supermassive black hole binaries
- But: signal larger than expected and different shape!

First-order phase transition

- Spontaneous symmetry breaking can happen through a first-order phase transition
- Strong supercooling possible for classically conformal dark sector
- Potential explanation of gravitatational wave signal observed by pulsar timing arrays
- Peak frequency around 10 nHz requires dark Higgs vev of order 100 MeV

Balan, FK et al., arXiv:2502.19478

19

Challenge 1: Coupling dark and visible sector

- Calculation assumes equilibrium of the dark sector with Standard Model thermal bath
- Need some coupling between the two sectors
- Mixed term in the scalar potential $|H|^2 |\Phi|^2$ spoils conformal symmetry after EWSB
- Simplest solution: Kinetic mixing between U(1)' gauge boson and hypercharge:

$$\mathcal{L} \supset \frac{\kappa}{2} F_{\mu\nu} F'^{\mu\nu}$$

→ Search for invisible decays of dark photons produced in collisions of SM particles (Leading constraints: BaBar & NA64)

Challenge 2: Depleting the dark sector

- After the phase transition, the dark sector dominates the energy density of the universe
- To recover standard cosmology, need to transfer this energy to SM particles
- Dark photon interactions are too weak to fully deplete the dark sector
- Non-negligible abundance of decoupled dark Higgs bosons remains after BBN
- Decay into e⁺e⁻ via dark-photon loops:

$$\tau_{\phi} \approx 2500 \,\mathrm{s} \left(\frac{\kappa}{10^{-4}}\right)^4 \left(\frac{g}{0.75}\right)^2 \frac{m_{\phi}}{30 \,\mathrm{MeV}} \left(\frac{m_{A'}}{100 \,\mathrm{MeV}}\right)^{-2}$$

Balan, FK et al., arXiv:2502.19478

Challenge 3: Dark matter relic density

- After symmetry breaking, the chiral fermions $\chi_{1,2}$ combine into a Dirac fermion χ
- This fermion is stable and could be a viable DM candidate
- Cosmological abundance set by freeze-out mechanism: $\Omega_{\rm DM} \simeq 0.1 \, \frac{10^{-8} \, {\rm GeV}^{-2}}{\langle \sigma_{\rm ann} v \rangle}$ For direct annihilation of DM into dark Higgs bosons: $\langle \sigma_{\rm ann} v \rangle \sim \frac{y^4}{m_{\rm DM}^2} \sim \frac{y^2}{v_{_{\! A}}^2}$
- For direct annihilation of DM into dark Higgs bosons:
- First-order phase transition requires dark sector couplings of order unity: y ~ 1
 - \rightarrow Observed DM relic density implies $v_{\phi} \sim \text{TeV}$
 - → Perfect for LISA, but not for pulsar timing arrays
 - → Need to find a way to suppress annihilation cross section

Chemical decoupling of DS

Freeze-out of DM

Detailed evolution

• Reproducing DM relic density requires m_{χ} and m_{ϕ} to be very close

Results

- Possible to fit PTA signal and reproduce observed DM relic abundance while satisfying bounds from dark photon searches
- Abundance and lifetime of dark Higgs bosons small enough to comply with BBN constraints
- Well-defined allowed parameter regions
 - → Predictions for future searches

Balan, FK et al., arXiv:2502.19478

Results

Model can be tested with future searches for invisibly decaying dark photons

Balan, FK et al., arXiv:2502.19478

Felix Kahlhoefer

Institute for Astroparticle Physics

Conclusions

- The mass scale of dark matter may be generated via the Coleman-Weinberg mechanism
 - → Dimensional transmutation from a classically conformal (i.e. scale-invariant) dark sector
 - → Spontaneous breaking of a U(1)' gauge symmetry via a dark Higgs mechanism
- Thermal corrections restore the gauge symmetry at high temperatures
 - → Expansion of the universe triggers a phase transition
 - → Potential barrier allows for supercooling and bubble nucleation
- A strong first-order phase transition generates gravitational waves
 - → For a sub-GeV dark sector, these gravitational waves are in the nano-Hertz range
 - → Potential expanation of signal seen by pulsar timing arrays
- Viable model: Conformal dark sector coupled to the Standard Model via kinetic mixing
 - Provides a viable dark matter candidate
 - → Satisfies cosmological and laboratory constraints on dark Higgs bosons and dark photons

