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→ Answer the big fundamental questions!

Can ML find answer these questions for us? No!

Can it help us with it? Yes!
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The challenge ahead
• general trend: larger-and-larger experiments 

collecting more-and-more data

• e.g. LHC: already enormous dataset will be further 
enlarged by a factor ∼ 10

• costs for future experiments increasing

• new analysis methods

• theory precision ≃ experimental precision
Fully exploit the available data!



The particle physics workflow
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ML can help with each of these steps by increasing

• accuracy/performance and/or

• increase speed

Experiment



ML in a nutshell
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Terminology
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• Artificial Intelligence (AI)
• machines performing complex tasks
• e.g. Feynman diagram generators, …

• Machine Learning (ML)
• subfield of AI where machines learn 

from data
• e.g. linear regression, BDTs, …

• Deep Learning (DL)
• subfield of ML using deep neural 

networks



Types of ML (selection)
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• regression (e.g. calorimeter calibration)
• classification (e.g. jet tagging)
• generation (e.g. event generation)

Tasks

• supervised (e.g. amplitude regression)
• unsupervised (e.g. data clustering)
• semi-supervised (e.g. anomaly detection)

Learning 
types



Neural networks

Henning Bahl 8

• activation introduces non-linearity (e.g. 𝑔 𝑥 = max(0, 𝑥))
• adjust weights by minimizing loss
• large enough network can in principle approximate any function



ML workflow
1. define the problem

2. collect and preprocess the dataset

3. define your ML model

4. training 

5. evaluation
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• ML strategy — multiple ways to approach problem

• loss — what objective do I want to optimize?

• architecture — what is the best structure for my NN?

• encode physics knowledge — symmetries, …



ML for particle physics
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precision precision

control physics



Amplitude surrogates
fast high-precision event generation
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Amplitude surrogates
• evaluating analytic expressions for amplitudes ℳ ! can be very expensive due to

• higher-order corrections
• large final-state multiplicities

 

• idea: 
• generate small training sample using full analytic expression
• train a NN to approximate ℳ ! 
• generate events using NN surrogate, which is much faster to evaluate

→ fast high-precision event generation
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ℳ ! ≈



Comparison to classical interpolation 
[Bresó, Heinrich, et al., 2412.09534]
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ML surrogates

classical interpolation techniques

ML surrogates outperform classical interpolation techniques

NLO 𝑞"𝑞 → 𝑡 ̅𝑡𝐻 amplitude



Speed comparison
[Janßen et al.,2301.13562]
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𝑓!"" =
𝑇#$%&'%('
𝑇#)((*+%$!

Large speed-ups possible!

dipole vs naïve: 
encode singularity structure of amplitudes



More physics knowledge 
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be
tt

er

Lorentz invariance

permutation invariance (𝑔" ↔ 𝑔#)

[2505.20280, Spinner et al.]

Exploiting symmetries drastically 
improves performance!



Monitoring uncertainties
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"All models are wrong, but some — those that know when they can be trusted — 
are useful!"

George Box (adapted)

our NN should not only give as a prediction but also tell us how certain it is



Regression with uncertainties
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Statistical unc ±2𝜎

Systematic unc ±2𝜎

• statistical uncertainty 1= lack of training data 

• systematic uncertainty 1= noise in the data, lack in model expressivity

[Yi&Bessa, 2505.02743]



Modelling the systematic uncertainty
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• log-likelihood loss:

ℒ = − 4
$!,&!∈("#$%&

log	𝑝 𝐴)*+,(𝑥") 𝑥", 𝜃

• assume Gaussian likelihood: 𝑝 𝐴|𝑥, 𝜃 = 𝒩(𝐴 𝑥 , 𝜎-.-)! 𝑥 )

• NN learns both: 𝐴(𝑥) and 𝜎-.-)(𝑥)

⇒ heteroskedastic	loss: 	ℒ =4
"

JK 𝐴 𝑥" − 𝐴)*+, 𝑥"
!

2𝜎-.-)! 𝑥"
+ log NO𝜎-.-) 𝑥"

• constant 𝜎-.-) → MSE loss

true amplitudessum over training dataset

phase-space point

NN parameters



Modelling the statistical uncertainty
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• train ensemble of networks
• each networks leads to slightly different result
• spread of network predictions ∼ statistical uncertainty
• less data → higher spread
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Modelling the statistical uncertainty
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• train ensemble of networks
• each networks leads to slightly different result
• spread of network predictions ∼ statistical uncertainty
• less data → higher spread

individual NNs

𝑤 ∼ 1/ 𝑁$(%,&

Rough  picture



Bringing it all together
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𝜎!"!# = 𝜎$%$!# + 𝜎$!&!#

Combined learnable modelling of systematic and statistical uncertainties!



Behavior of uncertainties 
[HB et al.,2412.12069]
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Test: apply different levels of Gaussian noise to amplitudes

• statistical unc. decreases with more training data

• systematic unc. converges to level of applied noise

𝐴$(%,& ∼ 𝒩(𝐴$()!, 𝜎$(%,&- ) 
	𝜎$(%,& = 𝑓#.!%(𝐴$()!

Same techniques also applicable to all kind of other problems!

→ reliable uncertainty estimate



Simulation-Based Inference
fully exploiting high-dimensional data
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Classical parameter inference 
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• reduce dimension of phase space                             → 
summary statistics

• bin summary statistics

• compare resulting histogram to SM/BSM 
predictions

Advantage: humanly digestible plots

Disadvantage: loss of information

[Elmer et al.,2312.12502]



Full likelihood
• Monte-Carlo simulation chain allows us to sample full likelihood 𝑝(𝑥|𝜃). But cannot directly 

compute it.

• Neyman-Pearson lemma: likelihood ratio                                         is most powerful statistical test

• but we can regress to reco-level 𝑟(𝑥|𝜃, 𝜃/) using known parton-level 𝑟(𝑧0|𝜃, 𝜃/):
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unbinned multi-dimensional inference without information loss

phase space 
point

theory 
parameters

NN average over event sample



Encoding amplitude structure
[Schöfbeck et al., 2107.10859, 2205.12976]
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Theory structure for e.g. SMEFT:

encode into likelihood

learn coefficients 𝑅","# separately → theory parameter dependence fully factored out



Parton-level cross-check: 𝑊±𝑍 production
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[HB et al.,2410.07315]

• consider effects of three SMEFT operators

almost perfectly learns high-dimensional likelihood



Reco-level: VBF with 𝐻 → 4ℓ
[Brehmer et al., 1805.00013]
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Huge potential to improve sensitivity of a wide variety of measurements/searches

But is SBI also viable in a realistic analysis including uncertainties etc.?
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1st experimental SBI analysis
[ATLAS-CONF-2024-016]

• goal: measure off-shell signal strength 
in 𝐻 → 𝑍𝑍 channel

• full treatment of statistical and 
systematic uncertainties

• large sensitivity improvement for low 
𝜇1223-4,55

proves potential of SBI for full experimental analysis



Conclusions
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Conclusions
• particle physics is in the precision era                                                                             
→ large amounts of multidimensional data

• ML methods excel in such an environment

• huge potential for increasing

• speed → e.g., amplitude surrogates
• performance → e.g., simulation-based inference

• uncertainty-aware NNs allow for controlled modelling

• encoding physics knowledge → large performance boosts
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ML methods will be indispensable for the future of particle physics

precision precision

control physics



Appendix
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Behavior of uncertainties 
[HB et al.,2412.12069]
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NNs can reliably extract noise level!

→ Are these uncertainties calibrated?

ensemble



Calibration of uncertainties
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ensemble
• statistical uncertainties negligible for 

our application

• define systematic pull:

𝑡#/#$ =
𝐴 𝑥 − 𝐴$(%,&(𝑥)

𝜎#/#$(𝑥)

• if calibrated, 𝑡#/#$ distribution should 
follow 𝒩(0, 1)

Almost perfectly calibration → reliable uncertainty estimate

Same techniques also applicable to all kind of other problems!



Encoding our physics knowledge
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Bayesian neural networks
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Repulsive ensembles
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Full likelihood
• Monte-Carlo simulation chain allows us to sample full likelihood 𝑝(𝑥|𝜃). But cannot directly 

compute it.

• train classifier 𝐷 to distinguish BSM sample (∼ 𝑝 𝑥 𝜃 ) and SM sample (∼ 𝑝 𝑥 𝜃/ ) :

𝐷16) 𝑥|𝜃, 𝜃/ =
𝑝 𝑥 𝜃/

𝑝 𝑥 𝜃 + 𝑝(𝑥|𝜃/)
→ likelihood	ratio

𝑝 𝑥 𝜃
𝑝(𝑥|𝜃/)

=
1 − 𝐷16)
𝐷16)

• Neyman-Pearson lemma: likelihood ratio is most powerful statistical test
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Unbinned multi-dimensional inference without information loss

phase space 
point

theory 
parameters



Advanced SBI tools
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• target: SMEFT operators in 𝑊±𝑍 production
• numerically stable results
• significantly better bounds than for histogram
• variety of cross-checks allows validating 

results 

[HB et al.,2410.07315]
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• target: SMEFT operators in 𝑊±𝑍 production
• numerically stable results
• significantly better bounds than for histogram
• variety of cross-checks allows validating 

results 

[HB et al.,2410.07315]

Future directions:
• application to masses, NLO corrections
• more pheno studies
• work towards real data application


