Introduction to ML for particle physics in the precision era

Henning Bahl

CRC Young Scientists Meeting, Heidelberg, 23.7.2025

The goal of particle physics

→ Answer the big fundamental questions!

Nature of EWSB

Neutrino masses

Dark matter

Baryon asymmetry

Naturalness

....

The goal of particle physics

→ Answer the big fundamental questions!

Nature of EWSB

Neutrino masses

Dark matter

Baryon asymmetry

Naturalness

Can ML find answer these questions for us? No!

The goal of particle physics

→ Answer the big fundamental questions!

Nature of EWSB

Neutrino masses

Dark matter

Baryon asymmetry

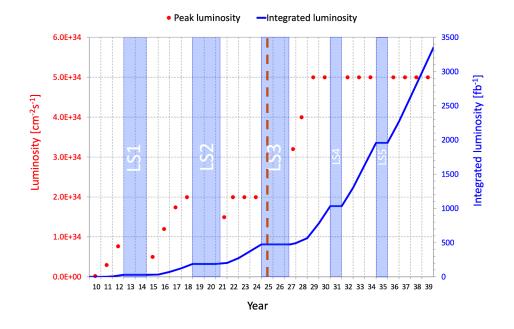
Naturalness

Can ML find answer these questions for us? No!

Can it help us with it? Yes!

The challenge ahead

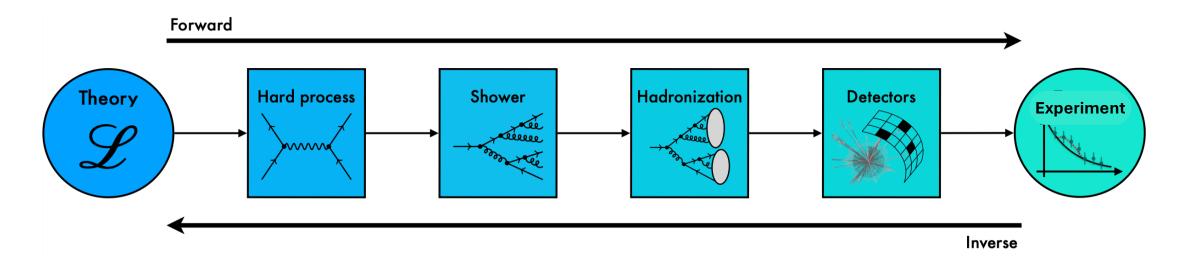
- general trend: larger-and-larger experiments collecting more-and-more data
- e.g. LHC: already enormous dataset will be further enlarged by a factor $\sim 10\,$
- costs for future experiments increasing



Fully exploit the available data!

- new analysis methods
- theory precision \simeq experimental precision

The particle physics workflow



ML can help with each of these steps by increasing

- accuracy/performance and/or
- increase speed

ML in a nutshell

Terminology

Artificial Intelligence (AI)

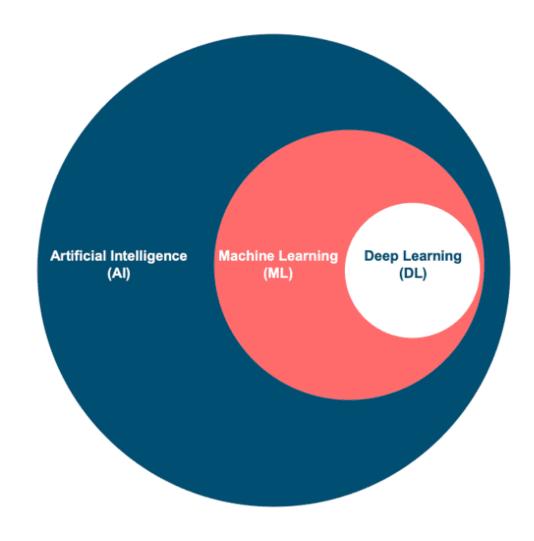
- machines performing complex tasks
- e.g. Feynman diagram generators, ...

Machine Learning (ML)

- subfield of AI where machines learn from data
- e.g. linear regression, BDTs, ...

Deep Learning (DL)

 subfield of ML using deep neural networks



Types of ML (selection)

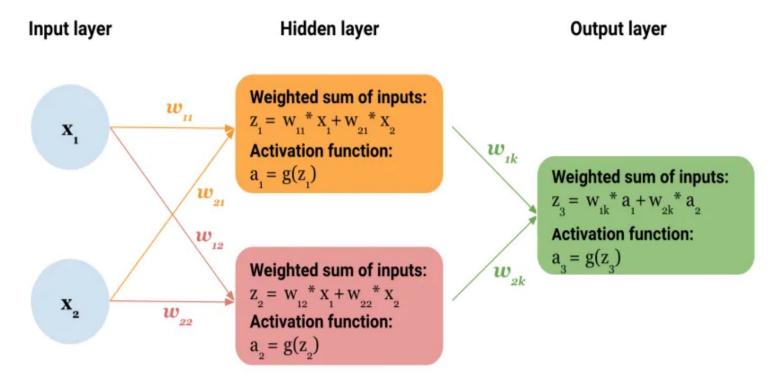
Tasks

- regression (e.g. calorimeter calibration)
- classification (e.g. jet tagging)
- generation (e.g. event generation)

Learning types

- supervised (e.g. amplitude regression)
- unsupervised (e.g. data clustering)
- semi-supervised (e.g. anomaly detection)

Neural networks



- activation introduces non-linearity (e.g. $g(x) = \max(0, x)$)
- adjust weights by minimizing loss
- large enough network can in principle approximate any function

ML workflow

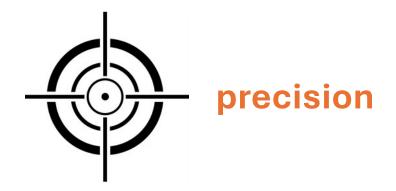
- 1. define the problem
- 2. collect and preprocess the dataset
- 3. define your ML model
- 4. training
- 5. evaluation

ML workflow

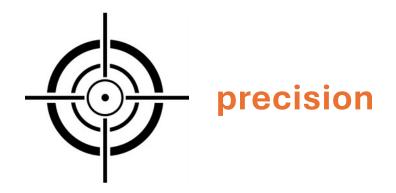
- 1. define the problem
- 2. collect and preprocess the dataset
- 3. define your ML model
- 4. training
- 5. evaluation

- ML strategy multiple ways to approach problem
- loss what objective do I want to optimize?
- architecture what is the best structure for my NN?
- encode physics knowledge *symmetries,* ...

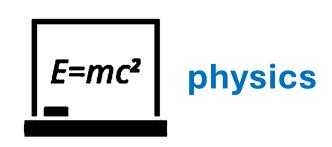
ML for particle physics



ML for particle physics

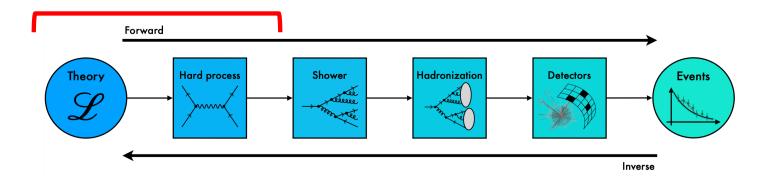


ML for particle physics



Amplitude surrogates

fast high-precision event generation



Amplitude surrogates

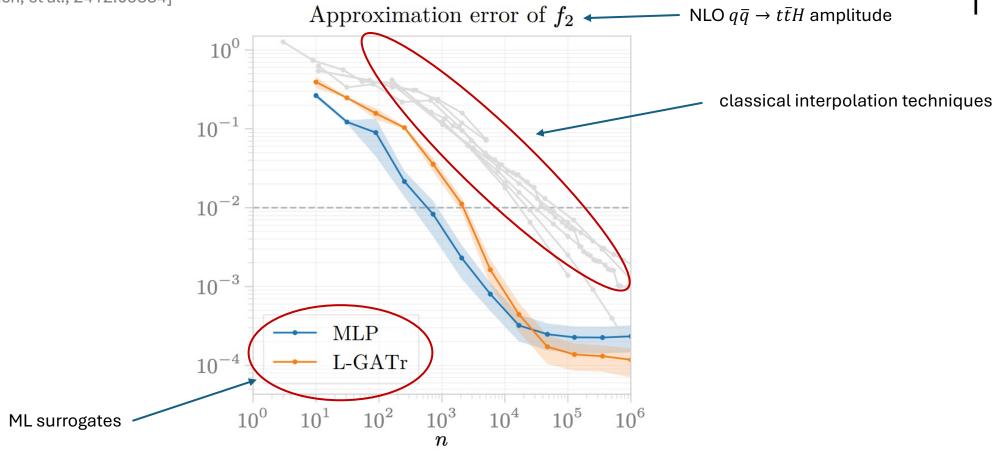
- ullet evaluating analytic expressions for amplitudes $|\mathcal{M}|^2$ can be very expensive due to
 - higher-order corrections
 - large final-state multiplicities

$$|\mathcal{M}|^2 \approx$$
ession

- idea:
 - generate small training sample using full analytic expression
 - train a NN to approximate $|\mathcal{M}|^2$
 - generate events using NN surrogate, which is much faster to evaluate
- → fast high-precision event generation

Comparison to classical interpolation

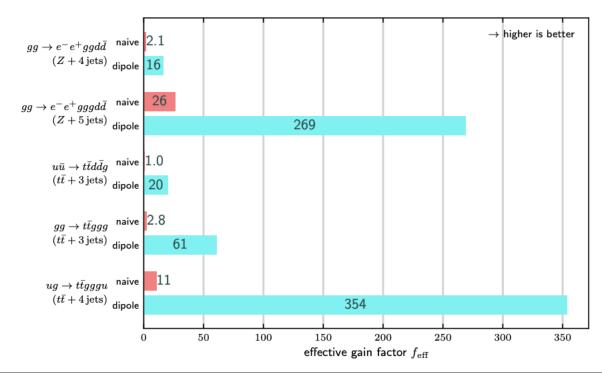
[Bresó, Heinrich, et al., 2412.09534]



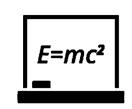
ML surrogates outperform classical interpolation techniques

Speed comparison

[Janßen et al.,2301.13562]



	Sherpa default			with dipole-model surrogate				
Process	$t_{ m ME} [m ms]$	$t_{\mathrm{PS}}[\mathrm{ms}]$	$\epsilon_{ m full}$	$t_{ m surr}[m ms]$	$x_{ m max}$	$\epsilon_{ m 1st,surr}$	$\epsilon_{ m 2nd,surr}$	$f_{ m eff}$
$gg \rightarrow e^-e^+ggd\bar{d}$	54	0.40	1.411%	0.14	2.6	1.418%	39%	16
$gg \rightarrow e^-e^+gggd\bar{d}$	16216	5.70	0.076%	0.20	3.6	0.085%	29%	269

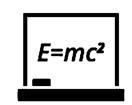


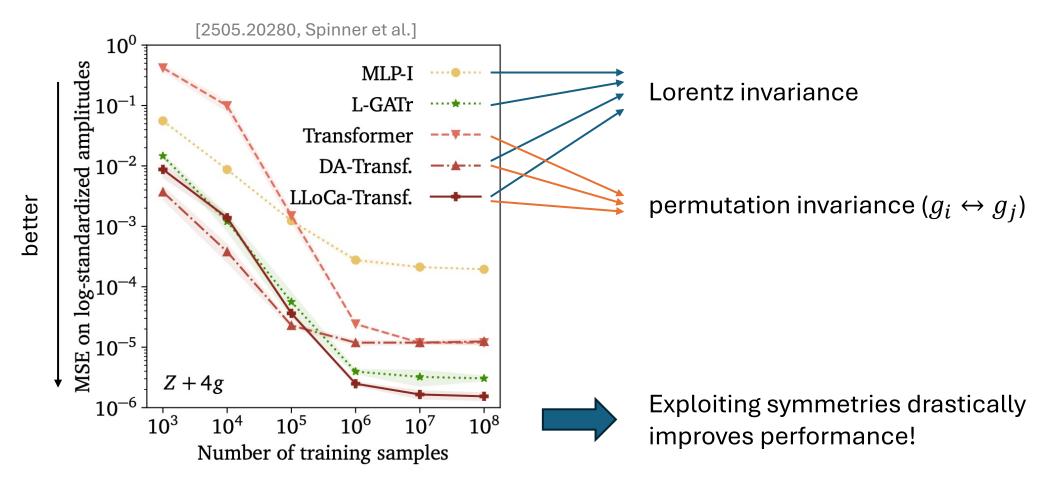
$$f_{\rm eff} = \frac{T_{\rm standard}}{T_{\rm surrogate}}$$

dipole vs naïve: encode singularity structure of amplitudes

Large speed-ups possible!

More physics knowledge





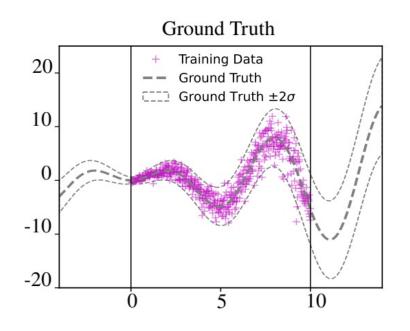
Monitoring uncertainties

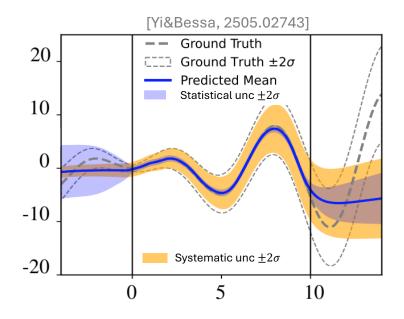
"All models are wrong, but some — those that know when they can be trusted — are useful!"

George Box (adapted)

our NN should not only give as a prediction but also tell us how certain it is

Regression with uncertainties



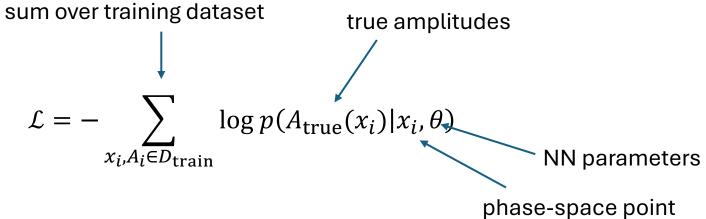


- statistical uncertainty

 lack of training data
- systematic uncertainty \hotensize noise in the data, lack in model expressivity

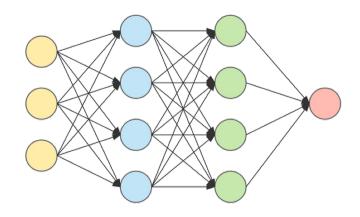
Modelling the systematic uncertainty

• log-likelihood loss:



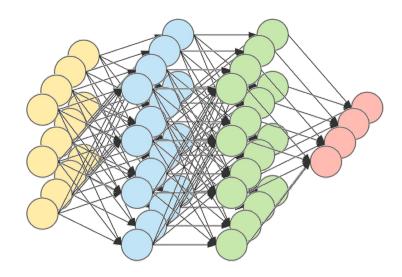
- assume Gaussian likelihood: $p(A|x,\theta) = \mathcal{N}(\overline{A}(x), \sigma_{\text{syst}}^2(x))$
- NN learns both: $\overline{A}(x)$ and $\sigma_{\rm syst}(x)$ $\Rightarrow \text{heteroskedastic loss: } \mathcal{L} = \sum_{i} \left[\frac{\left(\overline{A}(x_i) A_{\rm true}(x_i) \right)^2}{2\sigma_{\rm syst}^2(x_i)} + \log(\sigma_{\rm syst}(x_i)) \right]$
- constant $\sigma_{\mathrm{syst}} \to \mathsf{MSE}$ loss

Modelling the statistical uncertainty



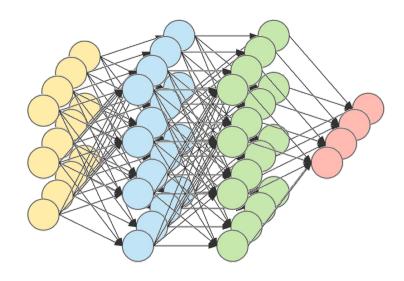
- train ensemble of networks
- each networks leads to slightly different result
- spread of network predictions \sim statistical uncertainty
- less data → higher spread

Modelling the statistical uncertainty

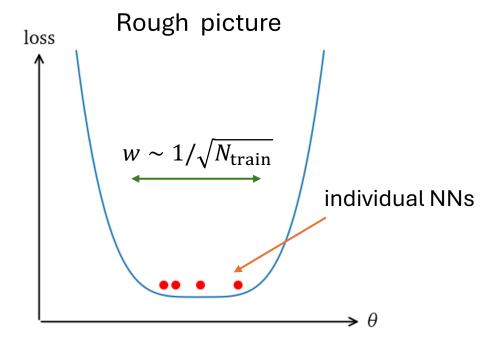


- train ensemble of networks
- each networks leads to slightly different result
- spread of network predictions ~ statistical uncertainty
- less data → higher spread

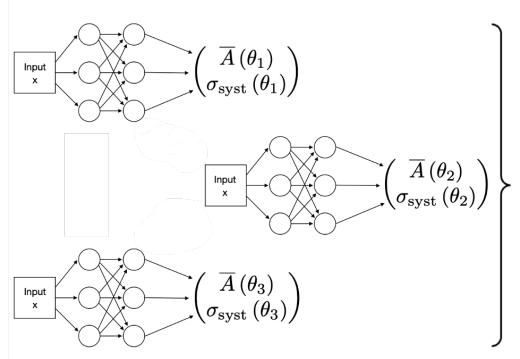
Modelling the statistical uncertainty



- train ensemble of networks
- each networks leads to slightly different result
- spread of network predictions ~ statistical uncertainty
- less data → higher spread



Bringing it all together



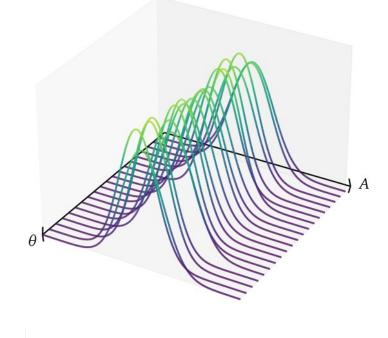
$$\langle A \rangle = \frac{1}{N} \sum_{i}^{N} \overline{A}(\theta_{i})$$

$$\sigma_{\text{syst}}^{2}(\theta_{2})$$

$$\sigma_{\text{syst}}^{2} = \frac{1}{N} \sum_{i}^{N} \sigma_{\text{syst}}^{2}(\theta_{i})$$

$$\sigma_{\text{stat}}^{2} = \frac{1}{N} \sum_{i}^{N} (\langle A \rangle - \overline{A}(\theta_{i}))^{2}$$

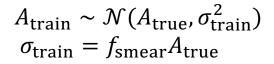
$$\sigma_{\text{tot}}^{2} = \sigma_{\text{syst}}^{2} + \sigma_{\text{stat}}^{2}$$

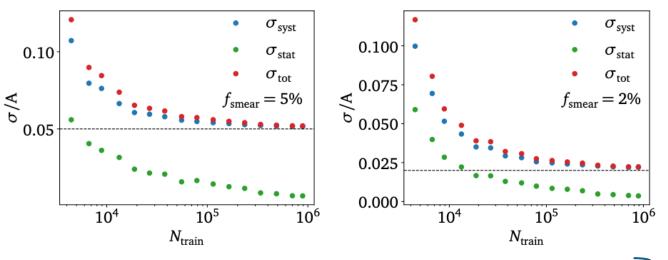


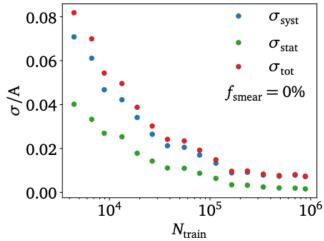
Combined learnable modelling of systematic and statistical uncertainties!

Behavior of uncertainties

[HB et al.,2412.12069]







Test: apply different levels of Gaussian noise to amplitudes

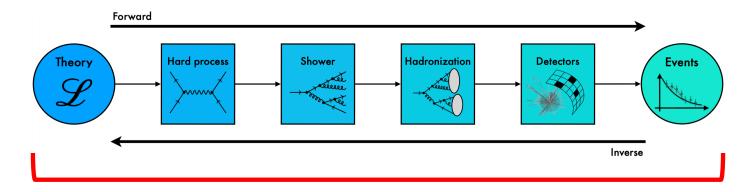
- statistical unc. decreases with more training data
- systematic unc. converges to level of applied noise

→ reliable uncertainty estimate

Same techniques also applicable to all kind of other problems!

Simulation-Based Inference

fully exploiting high-dimensional data

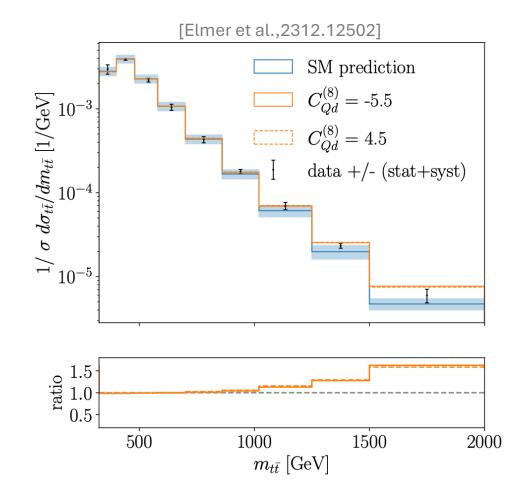


Classical parameter inference

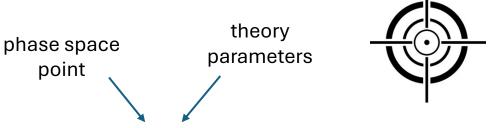
- reduce dimension of phase space summary statistics
- bin summary statistics
- compare resulting histogram to SM/BSM predictions

Advantage: humanly digestible plots

Disadvantage: loss of information



Full likelihood



- Monte-Carlo simulation chain allows us to sample full likelihood $p(x|\theta)$. But cannot directly compute it.
- Neyman-Pearson lemma: likelihood ratio $r(x|\theta,\theta_0) \equiv \frac{p(x|\theta)}{p(x|\theta_0)}$ is most powerful statistical test
- but we can regress to reco-level $r(x|\theta,\theta_0)$ using known parton-level $r(z_p|\theta,\theta_0)$:

$$\mathcal{L} = \left\langle \left[r(z_p | \theta, \theta_0) - r_{\varphi}(x | \theta, \theta_0) \right]^2 \right\rangle_{\substack{x, z_p \sim p(x | z_p) p(z_p | \theta); \theta \sim q(\theta) \\ \text{average over event sample}}}$$

unbinned multi-dimensional inference without information loss

Encoding amplitude structure

E=mc²

[Schöfbeck et al., 2107.10859, 2205.12976]

Theory structure for e.g. SMEFT:

$$\mathscr{L}_{\mathrm{SMEFT}} = \mathscr{L}_{\mathrm{SM}} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \ O_{i} \equiv \mathscr{L}_{\mathrm{SM}} + \sum_{i} \theta_{i} \ O_{i}$$

$$|\mathcal{M}(z_p|\theta)|^2 = |\mathcal{M}_{SM}(z_p)|^2 + \theta_i |\mathcal{M}_i(z_p)|^2 + \theta_i \theta_j |\mathcal{M}_{ij}(z_p)|^2$$

encode into likelihood

$$R(x|\theta,\theta_0) \equiv \frac{d\sigma(x|\theta)/dx}{d\sigma(x|\theta_0)/dx} = \frac{\sigma(\theta)p(x|\theta)}{\sigma(\theta_0)p(x|\theta_0)}$$

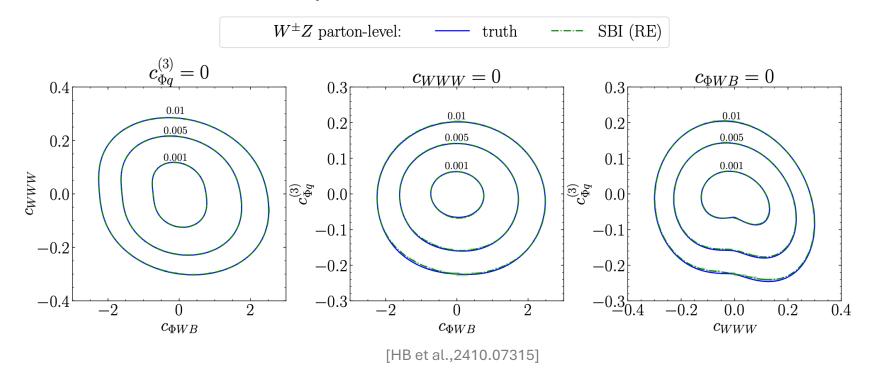
$$R(x|\theta, \theta_0) = 1 + (\theta - \theta_0)_i R_i(x) + (\theta - \theta_0)_i (\theta - \theta_0)_j R_{ij}(x)$$

$$egin{aligned} R_i(z_p) &\equiv rac{\partial}{\partial \, heta_i} rac{d\sigma(z_p| heta)/dz_p}{d\sigma(z_p| heta_0)/dz_p}igg|_{ heta= heta_0} &= rac{\partial_{ heta_i}|\mathcal{M}(z_p| heta)|^2}{|\mathcal{M}(z_p| heta_0)|^2}igg|_{ heta_0} \ R_{ij}(z_p) &\equiv rac{\partial^2}{\partial \, heta_i \, \partial \, heta_j} rac{d\sigma(z_p| heta)/dz_p}{d\sigma(z_p| heta_0)/dz_p}igg|_{ heta= heta} &= rac{\partial_{ heta_i} \partial_{ heta_j} |\mathcal{M}(z_p| heta)|^2}{|\mathcal{M}(z_p| heta)|^2}igg|_{ heta= heta_0} \end{aligned}$$

learn coefficients $R_{i,ij}$ separately \rightarrow theory parameter dependence fully factored out

Parton-level cross-check: $W^{\pm}Z$ production

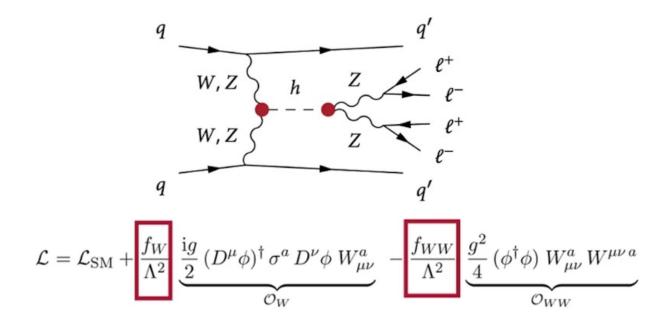
consider effects of three SMEFT operators

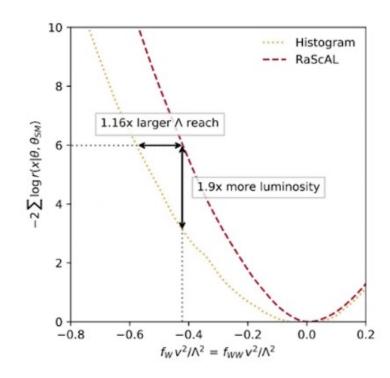


almost perfectly learns high-dimensional likelihood

Reco-level: VBF with $H \rightarrow 4\ell$

[Brehmer et al., 1805.00013]





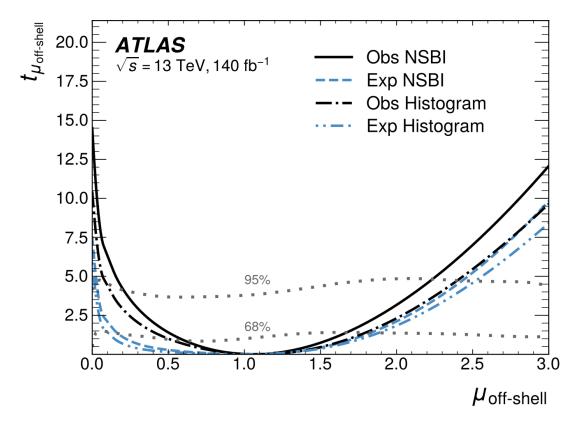
Huge potential to improve sensitivity of a wide variety of measurements/searches

But is SBI also viable in a realistic analysis including uncertainties etc.?

1st experimental SBI analysis

[ATLAS-CONF-2024-016]

- goal: measure off-shell signal strength in $H \to ZZ$ channel
- full treatment of statistical and systematic uncertainties
- large sensitivity improvement for low $\mu_{
 m off-shell}$



proves potential of SBI for full experimental analysis

Conclusions

Conclusions

- particle physics is in the precision era
 → large amounts of multidimensional data
- ML methods excel in such an environment
- huge potential for increasing
 - speed → e.g., amplitude surrogates
 - performance \rightarrow e.g., simulation-based inference
- uncertainty-aware NNs allow for controlled modelling
- encoding physics knowledge → large performance boosts

ML methods will be indispensable for the future of particle physics

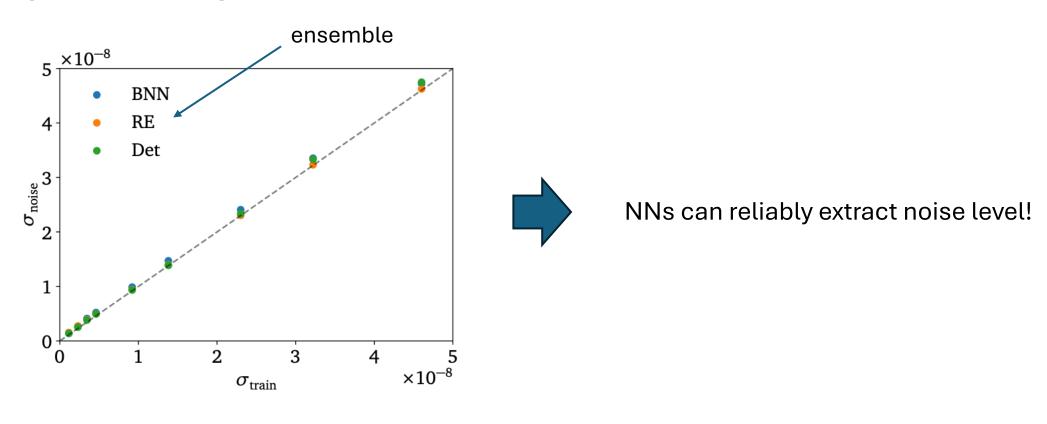
control

physics

Appendix

Behavior of uncertainties

[HB et al.,2412.12069]



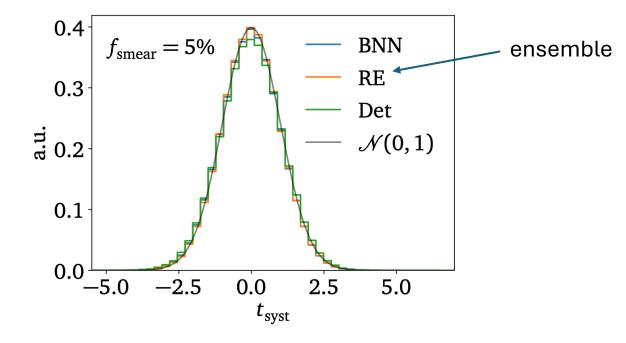
→ Are these uncertainties calibrated?

Calibration of uncertainties

- statistical uncertainties negligible for our application
- define systematic pull:

$$t_{\text{syst}} = \frac{\langle A \rangle(x) - A_{\text{train}}(x)}{\sigma_{\text{syst}}(x)}$$

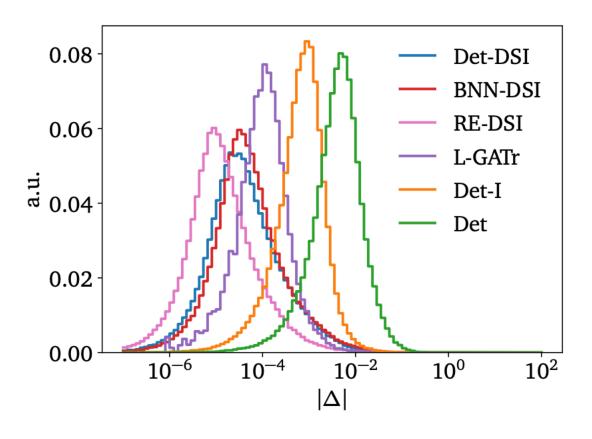
• if calibrated, $t_{
m syst}$ distribution should follow $\mathcal{N}(0,1)$



Almost perfectly calibration → reliable uncertainty estimate

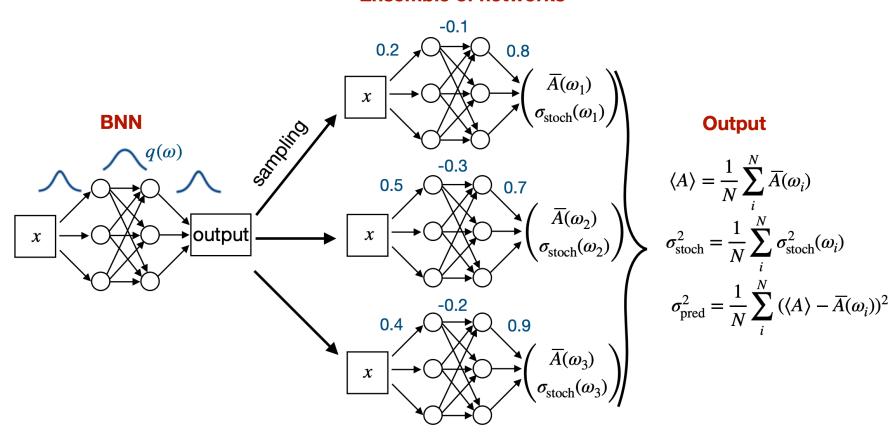
Same techniques also applicable to all kind of other problems!

Encoding our physics knowledge

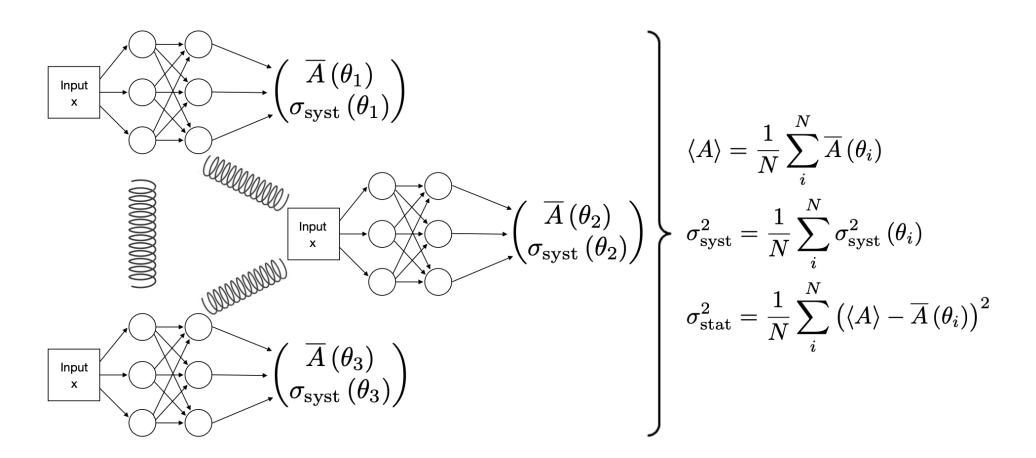


Bayesian neural networks

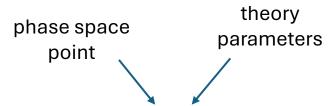
Ensemble of networks



Repulsive ensembles



Full likelihood



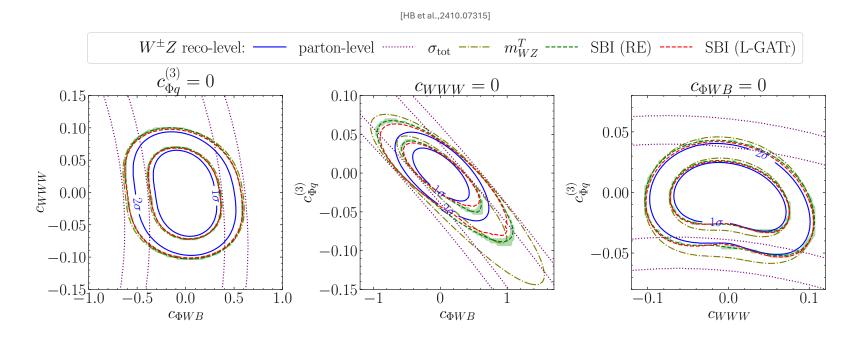
- Monte-Carlo simulation chain allows us to sample full likelihood $p(x|\theta)$. But cannot directly compute it.
- train classifier D to distinguish BSM sample ($\sim p(x|\theta)$) and SM sample ($\sim p(x|\theta_0)$):

$$D_{\text{opt}}(x|\theta,\theta_0) = \frac{p(x|\theta_0)}{p(x|\theta) + p(x|\theta_0)} \to \text{likelihood ratio } \frac{p(x|\theta)}{p(x|\theta_0)} = \frac{1 - D_{\text{opt}}}{D_{\text{opt}}}$$

• Neyman-Pearson lemma: likelihood ratio is most powerful statistical test

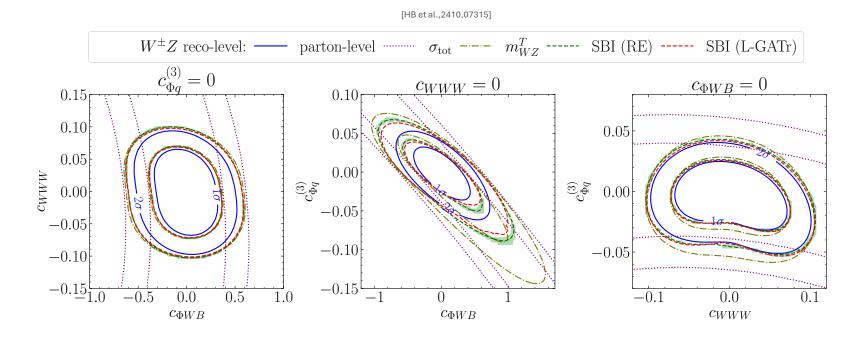
Unbinned multi-dimensional inference without information loss

Advanced SBI tools



- target: SMEFT operators in $W^{\pm}Z$ production
- numerically stable results
- significantly better bounds than for histogram
- variety of cross-checks allows validating results

Advanced SBI tools



- target: SMEFT operators in $W^{\pm}Z$ production
- numerically stable results
- significantly better bounds than for histogram
- variety of cross-checks allows validating results

Future directions:

- application to masses, NLO corrections
- more pheno studies
- work towards real data application