Tutorial: BwUniCluster 3.0/HoreKa
Large Eddy Simulation (LES) in OpenFOAM

Course material developed at SCC
Scientific Centre for Computing
Karlsruhe Institute of Technology

This course material is free: you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation. It is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; with-
out even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTIC-
ULAR PURPOSE. More details about the GNU General Public License can be seen at:

http://www.gnu.org/licenses/.

http://www.gnu.org/licenses/

SCC - Karlsruhe Institute of Technology - H.Tofighian

OpenFOAM LES Tutorial

Contents

(1 __Introductionl

[2

Case Setup for pimpleFoam)|

[2.1 Directory Structure|.
[2.2 Initial and Boundary Conditions (0/ Directory)|
2.2.1 Velocity Field (U)[.
2.2.2 Pressure Field (p)| o o
2.2.3 Turbulence Properties (e.g. nut, k (and epsilon for k-epsilon) model)| . . .
[2.3 Physical Properties (constant/ Directory)|

[2.3.1 Transport Properties|

[2.3.2 Turbulence Properties| oL

[2.3.3 polyMesh Directory] oo
[2.4 Solver Settings (system Directory)|,
2.4.1 Control Dictionary (controlDict)[.
2.4.2 Finite Volume Schemes (fvSchemes)
2.4.3 Finite Volume Solution (fvSolution)

[3.2.1 Synthetic Turbulence Generation|
[3.2.2 Recycling-Method (Mapped Boundary Condition)|

|3 Initial and Inlet Boundary Condition for LES|
3.1 Importance of Turbulent Inlet Conditions|
[3.2 Approaches for Generation of Turbulent Fluctuations in OpenFOAM|.
|4 Numerical Dissipation in LES|
[Post-processing]

b.1 Field Averaging|.
I;i,z I Szi“l I l!ztzf’sl
[5.3 Surface Sampling]
5.4 ()—Criterion and Iso—Surface Sampling|
[5.4.1 Computing) with fieldFunctionObjects]
[5.4.2 Extracting an Iso—Surfaceof Q)| L.
[5.4.3 Making animation of Results|
[5.5 Post-processing in Python| 0o oo

N

N O UL Ut WD NN

—_ = =
= o O O

12
12
13
13
14

15

Page 1

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

1 Introduction

In this tutorial, we will learn how to set up a Large Eddy Simulation (LES) case in Open-
FOAM uisng pimpleFoam solver. The tutorial covers essential aspects including inlet boundary
condition specification, numerical discretization considerations, and post-processing techniques.

2 Case Setup for pimpleFoam

2.1 Directory Structure

The simulation parameters in pimpleFoam are configured through a collection of text files orga-
nized in a directory structure called a simulation case, which defines all aspects of the numerical
setup including initial/boundary conditions (0/), physical properties (constant/), and solver
controls (system/).

A typical pimpleFOAM case has the following directory structure:

case/
|-- 0/ # Initial and boundary conditions
| I--1 # Velocity field
| [-— p # Pressure field
| |-— (other files: k, nut, etc.) # Turbulence fields (k, epsilon, etc.)
| -- constant/ # Mesh and physical properties
| | -- polyMesh/ # Mesh files
| | -— transportProperties # Fluid properties
|-- system/ # Solver settings and controls
| -- controlDict # Time control and output options
| -— fvSchemes # Discretization schemes
| -— fvSolution # Solution methods and tolerances

2.2 Initial and Boundary Conditions (0/ Directory)

The 0/ directory contains files that define the initial and boundary conditions for the simulation.
For a pimpleFOAM case, you typically need to define conditions for velocity (U), pressure (p),
and turbulence quantities if applicable.

2.2.1 Velocity Field (U)

/% r— G —=* *\
| =——— | \
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox \
| \\ / O peration | Version: v2112 \
| \\ / A nd | Website: www.openfoam .com |
| \\/ M anipulation | \
] */
FoamFile

{

version 2.0;

format ascii;

class volVectorField ;

object U;

}

dimensions [01 -1 000 0];
internalField uniform (0 0 0);
boundaryField

{

Page 2

SCC - Karlsruhe Institute of Technology - H.Tofighian

OpenFOAM LES Tutorial

inlet

{

type fixedValue;
value uniform (0 0 1);

}

outlet

{

type zeroGradient ;

//use advective for LES —> See: https://doc.openfoam.com/2306/tools/processing/
boundary—conditions/rtm/derived /outlet /advective/}

}

walls

{

type noSlip;

//or:
//fixedValue;

//value
}

uniform (0 0 0);

// For other boundaries like cyclic,

}

symmetry , etc.

2.2.2 Pressure Field (p)

*
=

/% x— G —x*

=	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
* */
FoamFile

{

version 2.0;

format ascii ;

class volScalarField ;

object P;

}

[02-2000 0];

uniform O0;

dimensions
internalField
boundaryField

{

inlet

{

type zeroGradient ;

}

outlet

{

type fixedValue;
value uniform 0; //or:

}

walls

{

type zeroGradient ;

// other boundaries like cyclic, symmetry,

}

$internalField ;

etc are available.

Page 3

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

2.2.3 Turbulence Properties (e.g. nut, k (and epsilon for k-epsilon) model)

If using a turbulence model, you would also need initial and boundary conditions for nut (tur-
bulent viscosity), k& (turbulent kinetic energy), € (turbulent dissipation rate), etc.
Example nut file:

{* | w— CH+ —x *l\
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
* * /
FoamFile
{

version 2.0;

format ascii;

class volScalarField ;

object nut ;
}

dimensions [0 2 -1000 0];

internalField uniform 0.0; //In dynamic LES models, nut will be calculated by
the model, and initial and boundary values are not important.

boundaryField

{
inlet
{
type calculated;
value uniform O0;
}
outlet
{
type calculated ;
value uniform O0;
}
walls
{
type calculated ;
value uniform O0;
}
Example k file (It is subgrid-scale (ksas) in LES)
/* o— = - : *\
=——	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
NEEELS—SS—SS—S—S—S—S—S——§—"—"—""""— %/
FoamFile
{
version 2.0;
format ascii;
class volScalarField;
object k;
}

dimensions [0 2 2000 0];

internalField uniform 0.0; // Set a small value for it in LES. But If you use
RANS, set it based on desired turbulence intensity .

boundaryField

{

inlet

Page 4

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

{
type fixedValue;
value uniform 0.0; // Set a small value for it in LES. But If
you use RANS, set it based on desired turbulence intensity .
}
outlet
{
type zeroGradient ;
}
walls
{
type fixedValue;
value uniform O0;
// For RANS use wall functions:
// type kqRWallFunction ;
// value uniform 0.375;
}
}
Example epsilon file (We do not need it in LES models)
/% x— CH —* *\
=	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
* */
FoamFile
{
version 2.0;
format ascii;
class volScalarField ;
object epsilon ;
}

dimensions

inte

rnalField

[02-3000 0];

uniform 0.0256;

boundaryField

{

inlet
{
type
value
scale
}

outlet

{
}

walls

{

type

type
value

// Based on k value and turbulence length scale

fixedValue;

uniform 0.0256;

// Based on k value and turbulence length

zeroGradient ;

epsilonWallFunction; // Use wall functions.
uniform 0.0256;

2.3 Physical Properties (constant/ Directory)

2.3.1 Transport Properties

The transportProperties file defines the fluid properties such as kinematic viscosity:

Page 5

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
* */
FoamFile
{

version 2.0;

format ascii;

class dictionary ;

object transportProperties;

}

transportModel Newtonian;
nu 0.0001;
[ook sk sk ok sk kR ok sk sk ok sk kR Kk sk ok sk koK KR R sk ok sk ok oK KR R Sk ok sk kK KR R sk sk kR KR kK sk kK KR kR koK R R Rk skokok k[/

2.3.2 Turbulence Properties

If your simulation includes turbulence modeling, you need to define the turbulence properties in
the turbulenceProperties file:

= s S
*- * k-

|7
\\ /

*
=

| |

F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
A */
FoamFile
{

version 2.0;

format ascii;

class dictionary ;

object turbulenceProperties;

}

simulationType LES; // options: laminar, LES, RANS
LES
{
LESModel dynamicKEqn
turbulence on;
printCoeffs on;
delta cubeRootVol; // (Vc) (1/3)
dynamicKEqnCoeffs

{
}

cubeRootVolCoeffs

filter simple;

deltaCoeff 1; // delta = deltaCoeff % (Vc)~(1/3)
}
¥

Page 6

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

2.3.3 polyMesh Directory

The constant/polyMesh/ directory contains all the files that define the computational grid
(mesh) for the simulation. The polyMesh directory typically contains the following files:

polyMesh/

|—— points

|—— faces

|—— owner

|-— mneighbour

|—— boundary

|—— (other files)

Coordinates of all mesh vertices

List of faces defined by point labels
Owner cell labels for each face

Neighbour cell labels for each face
Boundary patch definitions

Additional mesh information

There are several ways to generate the mesh for your OpenFOAM simulation:

blockMesh: OpenFOAM’s built-in utility for creating simple parametric meshes. It’s suit-
able for basic geometries such as channels, pipes, or rectangular domains. The mesh is defined
in the system/blockMeshDict file:

/% x— CH —* *\
| —— | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: v2112

\
| \\ / A nd | Web: www . OpenFOAM . com |
| \\/ M anipulation | |
\# */
FoamFile
{

version 2.0;

format ascii;

class dictionary ;

object blockMeshDict ;
}
convertToMeters 0.25;
vertices
(

—0.65 0.65 0) //0

1.414212 1.414212 0) //1

414212 1.414212 0) //2

—0.65 0.65 25) //4

1.414212 1.414212

25) //5

414212 1.414212 25) //6

(

(,

(1.

(0.65 0.65 0) //3
(

(

(

(

1
0.65 0.65 25) //7

0.65 — 0.65 0) //8

NN

1.414212 — 1.414212 0) //9
0.65 — 0.65 25) //10
1.414212 — 1.414212 25) //11

(—0.65 — 0.65 0) //12
(—1.414212 — 1.414212 0) //13
(—0.65 — 0.65 25) //14
(—1.414212 — 1.414212 25) //15

)

xcells 7;
ycells 7;
zcells 70;

xcellsl 7;

Page 7

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

ycellsl 7;
zcellsl 70;

stretch 1;

blocks

(

)

//block0

hex (0 32147 6 5) ($xcells $ycells $zcells) simpleGrading (1 $stretch 1)
//blockl

hex (3 8 9 2 7 10 11 6) ($xcells $ycells $zcells) simpleGrading (1 $stretch 1)
//block2

hex (8 12 13 9 10 14 15 11) ($xcells $ycells $zcells) simpleGrading (1
$stretch 1)

//block3

hex (12 0 1 13 14 4 5 15) ($xcells $ycells $zcells) simpleGrading (1 $stretch
1)

//block4

hex (0 12 8 3 4 14 10 7) ($xcellsl $ycellsl $zcellsl) simpleGrading (1 1 1)

edges

(

) g

//block0 arc
arc 1 2 (0 2 0)
arc 5 6 (0 2 25)

//blockl arc
arc 2 9 (2 0 0)
arc 6 11 (2 0 25)

//block2 arc
arc 9 13 (0 —2 0)
arc 11 15 (0 —2 25)

//block3 arc
arc 1 13 (=2 0 0)
arc 5 15 (—2 0 25)

//block4d arc

arc 0 3 (0 0.7 0)
arc
arc
arc

co o O
—
o
—
=
\
=
-~
[en)
=

arc 4 7

1 0 25)
arc 10 14 (0 —0.7 25)
arc 10 7 (0.7 0 25)

boundary

(

inlet

{
type patch;
faces

(

._l\/\/

© W =
— =
—

o~ N o
)

(
(
(
(
(

Page 8

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

)e
}

outlet

{
type patch;
faces

(

(

(6 7 10 11)
(15 11 10 14)
(15 14 4 5)
(4 7 10 14)

)

)

}

walls

{

type wall;
faces

(
156 2)

(
(2 6 11 9)
(9 11 15 13)
(15 13 5 1)
)

)

}
)3

mergePatchPairs

(
) ¢

The mesh created by running the command:

$ blockMesh

snappyHexMesh: A more advanced OpenFOAM utility for generating complex 3D meshes
based on triangulated surface geometries (STL files). It creates predominantly hexahedral
meshes that conform to complex geometries through a series of operations including castel-
lation, snapping, and layer addition. It’s configured through the system/snappyHexMeshDict
file and is typically run after blockMesh:

$ snappyHexMesh
External mesh generators: For complex geometries, it’s often more convenient to use spe-
cialized external mesh generation software and convert the mesh to OpenFOAM format. Open-

FOAM provides several conversion utilities:
fluent3DMeshToFoam: Converts Fluent .msh mesh files to OpenFOAM format

$ fluent3DMeshToFoam fluentMesh . msh
cfx4ToFoam: Converts CFX mesh files gambitToFoam: Converts Gambit mesh files ideasUnvToFoam:
Converts I-DEAS .unv mesh files star4ToFoam: Converts STAR-CD mesh files gmshToFoam:

Converts Gmsh mesh files
After generating the mesh, it’s good practice to check its quality using:

$ checkMesh

This will report various mesh quality metrics such as non-orthogonality, skewness, and aspect
ratio, which can help identify potential issues before running the simulation. Poor mesh quality
can lead to numerical instability and inaccurate results.

Page 9

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

2.4 Solver Settings (system Directory)

2.4.1 Control Dictionary (controlDict)

The controlDict file controls the simulation execution parameters:
/* e Ct —

| ———— |

\\ / | OpenFOAM: The Open Source CFD Toolbox
\\ / peration | Version: v2112
|
|

*
=

ield

F

0]
\\ / A nd Website: www.openfoam .com
\\/ M anipulation

|

|

|

|
\%
FoamFile
{

version 2.0;

format ascii;

class dictionary ;
object controlDict ;

}

application pimpleFoam ;

startFrom latestTime; // Options: startTime, latestTime, etc.
startTime 0;

stopAt endTime;

endTime 100;

deltaT 0.02; // Time step size

writeControl timeStep; // Options: timeStep, runTime, adjustableRunTime
writelnterval 10; // Write results every 10 time steps

purgeWrite 0; // Keep all time directories

writeFormat ascii; // Options: ascii, binary

writePrecision 6;

writeCompression on;

timeFormat general ;

timePrecision 6;

runTimeModifiable false; // Allow modifications during run time

adjustTimeStep yes; // Enable adaptive time stepping
maxCo 0.4; // Maximum Courant number

functions

// Function objects for post—processing can be added here
[ook sk sk sk ok sk kot ok sk s sk ok sk sk ok Kk sk ok sk ok ok KR R Sk ok sk ok ok KR R sk ok sk ok ok R R ok sk koK K R Kk sk ok ok KRk sk sk ok ok R Rk skokok k[/
2.4.2 Finite Volume Schemes (fvSchemes)

The fvSchemes dictionary specifies the discretization schemes:

= o S
*- * %

*
=

| |
[\\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
\\ / O peration	Version: v2112
\\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
* */
FoamFile
{
version 2.0;
format ascii;
class dictionary;
object fvSchemes;

}

Page 10

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

ddtSchemes
{

default Euler; // First—order time derivative scheme: Euler and Second
—order: backward or CrankNicolson <coeff>

gradSchemes

{
}

divSchemes

{

default Gauss linear ;

default none ;
div (phi,U) Gauss linearUpwind grad (U);
div (phi, k) Gauss limitedLinear 1;

div ((nuEffxdev2(T(grad (U))))) Gauss linear;
}

laplacianSchemes

{
}

interpolationSchemes

{
}

] skskok ok ok sk ok sk sk sk ok ok sk sk ok sk sk sk ok ok s sk ok sk sk sk ok ok ok ok sk sk ok ok kK ok sk sk sk sk ok ok s ok sk ok sk ok ok K sk ok sk sk sk ok ok Rk ok sk sk ok ok ok kokokskk k[/

default Gauss linear corrected;

default linear ;

2.4.3 Finite Volume Solution (fvSolution)

The fvSolution dictionary specifies solver settings, tolerances, and PIMPLE algorithm param-
eters:

/* x— CH —x* - *\
———	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: v2112
\ \\ / A nd	Website: www.openfoam .com
\\/ M anipulation	
— R S %/
FoamkFile
{

version 2.0;

format ascii;

class dictionary ;

object fvSolution ;

}

solvers

{

p

{
solver GAMG;
tolerance le —06;
relTol 0.01;
smoother GaussSeidel ;

cacheAgglomeration true;
nCellsInCoarsestLevel 1000;

agglomerator faceAreaPair;
mergelevels 1;

}

pFinal

Page 11

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

DICGaussSeidel ;
1le—06;

2;

// when you do not have a boundary with known pressure:

0;
0;

{
$p;
smoother
tolerance
relTol
}
” (U|k)77
{
solver
preconditioner
tolerance
relTol
minlter
}
7 (U|k)Final?
{
solver
preconditioner
tolerance
relTol
minlter
}
PIMPLE
{
nOuterCorrectors 1;
nCorrectors
nNonOrthogonalCorrectors 0;
// pRefCell
// pRefValue
}

U Magnitude
00e+00 02 03 04 05 06 0.7 08 09 1 1.2e+00
|

ﬁ‘ ‘ ‘ l ‘ h

walls

Figure 1: Result of testCase — simple.

We used an LES model, but we couldn’t resolve any flow structures. Why?

3 Initial and Inlet Boundary Condition for LES

3.1 Importance of Turbulent Inlet Conditions

In Reynolds-Averaged Navier-Stokes (RANS) simulations, the effects of turbulence are modeled
using turbulence models, which are based on empirical relationships between the mean flow

Page 12

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

properties and turbulence quantities. These models assume that the turbulence is statistically
steady and homogeneous, which means that the turbulence structures do not vary significantly
in space and time. As a result, generating turbulent structures at the inlet is not necessary in
RANS simulations because the turbulence models are designed to simulate the averaged effects
of turbulence on the mean flow.

In contrast, for Large Eddy Simulation (LES) or Direct Numerical Simulation (DNS) of fluid
flows, it is important to accurately capture the turbulent structures present in the flow. In order
to capture these turbulent structures, it is necessary to specify appropriate boundary conditions
at the inlet of the computational domain. This is because turbulence is an unsteady and chaotic
process, and the statistical properties of the turbulence vary in both space and time.

3.2 Approaches for Generation of Turbulent Fluctuations in OpenFOAM

3.2.1 Synthetic Turbulence Generation

Divergence-Free Synthetic Eddy Method (turbulent DFSEMInlet) is a velocity boundary condi-
tion including synthesized eddies for use with DNS, LES, and DES turbulent flows. It can be
used as:

inlet
{
type turbulentDFSEMInlet ;
delta 1; // Characteristic length scale
U uniform (0 0 1); // Mean velocity
R uniform (0.2 0 0 0.2 0 0.2); // Reynolds stress: <Rxx> <Rxy> <
Rxz> <Ryy> <Ryz> <Rzz>
L uniform 0.4; // Integral length scale
nCellPerEddy 1; // Minimum eddy length in units of number
of cells
value uniform (0 0 1);
}
U Magnitude
00e+00 040608 1 121416 20e+00
—] —
B e
inlet - outlet
—_— c—
walls

Figure 2: Result of testCase — in flow — generator.

It is possible to use a field for U, R, and L in turbulentDFSEMInlet. To do that, first use
codedFixedValue to generate the velocity field in the inlet and write the data just for a time
step. Then this generated field can be pasted in turbulentDFSEMInlet boundary condition.
Below is an example of codedFixedValue boundary condition:

inlet

{
type codedFixedValue;
value uniform (0 0 0);
name mylnlet ;
code

Page 13

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

#{
scalar U.max = 2;
const fvPatch& boundaryPatch = this—>patch () ;
const vectorField& Cf = boundaryPatch.Cf();
vectorField& field = *this;
forAll (boundaryPatch, i)
{
scalar r = sqrt (Cf[i].y()*«Cf[i].y() + Cf[i].x()*Cf[i].x())/0.5;
field [i] = vector (0, 0, U.max*Foam::pow(1.0—r, 1.0/7.0));
}
#1;

One of the main problems of the turbulentDFSEMInlet is that it needs additional data for
Reynolds stresses and integral length scale, which is not available in many cases. Moreover, the
generated flow in the inlet is not completely physical.

3.2.2 Recycling-Method (Mapped Boundary Condition)

This approach involves extending the domain upstream and extracting turbulent velocities (and
other fields if needed) from the interior domain.

interpolation

Figure 3: Schematic of the Recycling method for inlet boundary conditions.

To use this method, the boundary file in the polyMesh directory should be modified in the
following way:

inlet
{
type mappedPatch ; // modified
nFaces 245;
startFace 50225;
sampleMode nearestCell; // added
samplePatch none; // added
sampleRegion region0 ; // added
offsetMode uniform ; // added
offset (0 0 5); // added
}

Then the boundary condition is set for U and k as below:
For velocity (U):

inlet

{

Page 14

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

type mapped ;
value uniform (1 0 0);
interpolationScheme cell;
setAverage true ;
average (1 0 0);

}

For turbulent kinetic energy (k):

inlet

{
type mapped ;
value uniform 0.0;
interpolationScheme cell;
setAverage false ;

}

One benefit of using this approach is that it does not require any parameters. However, it is
important to note that the internal field needs to be agitated initially, as otherwise, it may take
a significant amount of time for turbulent structures to form. Therefore, a possible solution is
to utilize the turbulentDFSEMInlet method to generate vortices throughout the pipe (with a
rough estimation of R and L) before switching to the mapped boundary condition.

4 Numerical Dissipation in LES

Numerical dissipation in Large Eddy Simulation (LES) refers to the artificial damping of the
resolved turbulent scales due to the discretization of the governing equations on a numerical
grid. Numerical dissipation arises from the truncation error in the numerical scheme used to
solve the equations, and can lead to a loss of accuracy in the resolved scales.

In LES, the resolved turbulent scales are computed on a grid with finite resolution, which
means that small-scale turbulent structures cannot be fully resolved and must be modeled using
subgrid-scale (SGS) models. The numerical dissipation in the LES model can cause additional
damping of the resolved scales, which can impact the accuracy of the subgrid-scale models.

In OpenFOAM, there are several discretization schemes available for the solution of the
Navier-Stokes equations, each with different levels of numerical dissipation and accuracy. The
choice of discretization scheme depends on the specific flow problem and the desired level of
accuracy. However, central differencing schemes (Linear) are less diffusive than the upwind
schemes, but they can introduce numerical oscillations in regions with strong gradients.

An example of a suitable discretization for LES is shown below:

/% w*— G —* *\
\ | |
|\ / F ield | OpenFOAM: The Open Source CFD Toolbox \
|\ / O peration | Version: v2112 \
| \ / A nd | Website: www.openfoam .com |
| \/ M anipulation | \
\# */
FoamFile
{

version 2.0;

format ascii;

class dictionary ;

object fvSchemes;
}
[/ % k ok ok ok ok ok %k ok ok ok ok ok ok ok ok k% ok ok ok Kk k ok ok ok k k k% k k x k %k x % *x [/
ddtSchemes
{

default backward ;

Page 15

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

}

gradSchemes

{
default leastSquares; // 7 Gauss linear” is more stable

}

divSchemes

{
default none;
div (phi,U) Gauss linear; // use "LUST” For low quality grids
div (phi, k) Gauss linear ; // use 7limitedLinear” For low quality grids
div ((nuEffxdev2(T(grad (U))))) Gauss linear;

}

laplacianSchemes

{
default Gauss linear corrected ;

}

interpolationSchemes

default linear ;

}

[sk ok ok sk sk ok sk stk ok ok sk sk sk sk sk ok ok sk sk sk ok sk sk ok ok sk sk sk ok sk ok ok Kk sk ok ok sk ok ok Kk sk ok sk sk ok ok Kk sk ok sk ok ok Kk sk ok sk ok ok kkoskskokok ok [/

To examine the effect of discretization in LES, you can apply the following changes in
fvSchemes of testCase2:

div (phi,U) Gauss linear; —> div(phi,U) Gauss linearUpwindV grad (U);

div(phi,U) Gauss linear;

div(phi,U) Gauss linearUpwindV grad(U);

Figure 4: Effect of discretizations schemes

5 Post-processing

5.1 Field Averaging

The "fieldAverage” is a utility that is used to compute time-averaged scalar and vector fields
from the transient data generated by OpenFOAM solvers. It can also compute the root-mean-
square (RMS) values of the fluctuating components of the fields. The time-averaged fields can
be used for further analysis, such as computing turbulence statistics, or for validation against
experimental data.

To use this utility, the following code should be added in the controlDict:

Page 16

SCC - Karlsruhe Institute of Technology - H.Tofighian

OpenFOAM LES Tutorial

functions

{
myFieldAverage
{
type fieldAverage;
libs (fieldFunctionObjects);
writeControl writeTime ;
fields
(
U
{
mean on;
prime2Mean on;
base time ;
}
p
{
mean on;
prime2Mean on;
base time ;
}
)
}
}

5.2 Point Probes

The ”probes” utility in OpenFOAM is a diagnostic tool used to extract information about the
flow field at a particular point or location during the simulation. It can be used to monitor the
evolution of various flow parameters such as velocity, pressure, temperature, and turbulence at

a given point or a set of points in the computational domain.

To use this utility, the following code should be added in the controlDict:

functions

{
probes
{
type probes;
libs (sampling) ;
name probes;
writeControl timeStep ;
writelnterval 1;
fields
(
U
)
probelocations
(
(0 0 5)
(0.025 0 5)
(0.05 0 5)
(0.075 0 5)
(0.1 0 5)
)
}
}

5.3 Surface Sampling

In OpenFOAM, the "surfaces” utility can be used to perform surface sampling of various flow
parameters such as velocity, pressure, and temperature on defined surfaces. To perform surface

Page 17

SCC - Karlsruhe Institute of Technology - H.Tofighian

OpenFOAM LES Tutorial

sampling using the surfaces utility, a user needs to first define the surface(s) of interest using a
surface definition input. This definition specifies the location and geometry of the surface(s) in

the computational domain.

To use this utility, the following code should be added in the controlDict:

functions

{
cuttingPlane
{
type surfaces;
libs (sampling) ;
writeControl timeStep ;
writelnterval 5
surfaceFormat vtk ;
fields (U);
interpolationScheme cellPoint ;
surfaces
{
zNormal
{
type cuttingPlane;
planeType pointAndNormal ;
pointAndNormalDict
{
point (0 0 0);
normal (01 0);
}
interpolate true;
}
}
}
}

5.4 ()—Criterion and Iso—Surface Sampling

The Q—criterion is a scalar field used to identify vortical structures in a flow. It is defined as

Q=3 (I2l* - 1SI?)

where

S=1(VU+(VU)T) and Q=L(VU—(VU)T)

are the rate—of—strain tensor and the vorticity tensor, respectively. Positive values of @) indicate

regions where rotation dominates over strain (vortical regions).

5.4.1 Computing @Q with fieldFunctionObjects

Add the following to your controlDict under the functions block to compute Q:

functions

{
Q1
{
type Q;
libs (fieldFunctionObjects) ;
writeControl writeTime; // write Q at every saved time
// Alternatively , use:
// writeControl timeStep ;
// writelnterval 1;
}
}

Page 18

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

5.4.2 Extracting an Iso—Surface of ()

To sample an iso—surface at () = 1.0, extend your controlDict functions block:

functions

{
QisoSurface
{
type surfaces;
libs (sampling) ;
writeControl timeStep ;
writelnterval 53
surfaceFormat vtk ;
fields (Up);
surfaces
{ .
iso
{
type isoSurface;
isoField Q;
isoValue 1.0;
}
}
}
}

This produces VTK files at
postProcessing/QisoSurface/<time>/iso_Q_1.0000.vtk

every b time-steps.

5.4.3 Making animation of Results

It is possible to utilize a Python script to create an animation of the output files that have been
generated. The ”vtkAnim.py” can be downloaded from the following link:
https://openfoamwiki.net/index.php/VtkAnim

5.5 Post-processing in Python

While OpenFOAM provides built-in utilities for post-processing, it is also possible to export
simulation data into formats compatible with Python-based scientific computing libraries such
as PyTorch.

The following custom C++ utility, FoamToGraph, reads the velocity field U and mesh con-
nectivity from an OpenFOAM case, and converts the data into tensors suitable for python using
the LibTorch (C++ version of PyTorch) API.

/% *\
BRE— |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam .com
\\/ M anipulation |

Copyright (C) 2016 OpenFOAM Foundation
Copyright (C) 2018—-2021 OpenCFD Ltd.

License

This file is part of OpenFOAM.

OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by

Page 19

https://openfoamwiki.net/index.php/VtkAnim

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

OpenFOAM is distributed in the hope that it will be useful , but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Application
FoamToGraph

Description
FoamToGraph By H. Tofighian

\ */
#include <torch/torch.h>
#include <torch/script.h>

#include ”arglList .H”
#include ”"timeSelector .H”
#include ”"volFields .H”

#include <stdio.h>
#include <stdlib .h>

using namespace Foam;

int main(int argc, char sargv[])

{

timeSelector :: addOptions () ;

#include ”setRootCase.H”

#include ”createTime .H”

instantList timeDirs = timeSelector :: select0 (runTime, args);
#include ”createNamedMesh .H”

// Create output directory in case directory

fileName outputDir(runTime.rootPath ()/runTime. globalCaseName ()/” graph_data”);
Foam : : mkDir (outputDir) ;

Info<< ”Saving graph data to: 7 << outputDir << nl << endl;

forAll (timeDirs, timei)

{

runTime.setTime (timeDirs [timei], timei);

Info<< ?Time = ” << runTime.timeName () << endl;
Info<< ”Reading field U\n” << endl;
volVectorField U

(

IOobject

(
77U7’ ,
runTime . timeName () ,
mesh ,

IOobject : : MUST READ,
IOobject : : NO_WRITE

Page 20

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

mesh

)
const label nCells = mesh. cells ().size();

// Extract node features: use the velocity components (x, y, z) from each
cell .
std :: vector<float> node_feat;
node_feat.reserve (3 * nCells);
forAll (U, 1)
{
node_feat .push_back (U[i].x
node_feat .push_back (U[i]. y())
node_feat .push_back (U[i].z());

// Create a LibTorch tensor for node features with shape [nCells, 3].

torch :: Tensor node_features = torch:: from_blob (node_feat.data(), {
static_cast <long>(nCells), 3}, torch::kFloat32).clone(); // Shape: [num_nodes,
3]

// Build edge indices using mesh connectivity .

// In OpenFOAM, each internal face connects two cells. The mesh provides

// owner and neighbour lists; we add both directions for an undirected
graph .

const labelList& owner = mesh.owner () ;

const labelList& neighbour = mesh.neighbour () ;

const size_t numFaces = owner.size ();

const size_-t numEdges = 2*numFaces;

// Separate lists for source and target indices.
std :: vector<int64_t> edge_sources;
std :: vector<int64_t> edge_-targets;

// Reserve space for two directed edges per face.
edge_sources.reserve (numEdges) ;
edge_targets.reserve (numEdges) ;

forAll (owner, i)
{
// Forward edge: owner —> neighbour.
edge_sources . push_back (owner[i]) ;
edge_targets.push_back (neighbour[i]);
// Reverse edge: neighbour —> owner.
edge_sources . push_back (neighbour[i]) ;
edge_targets.push_back (owner[i]) ;
}
// Create a tensor for edge indices; stack two vectors.
torch :: Tensor edge_index = torch::stack ({
torch :: from_blob (edge_sources.data(), {static_cast <long>(numEdges) },
torch :: kInt64) ,
torch :: from_blob(edge_targets.data(), {static_cast<long>(numEdges) },
torch :: kInt64)
}).clone(); // Shape: [2, num_edges]

// Extract node positions: cell centers (x, y, z) for each cell
std :: vector<float > node_pos;

node_pos.reserve (3 * nCells);

// Get cell centers
const pointField& cellCenters = mesh.C();

// Add each cell center coordinate to the positions vector
forAll (cellCenters , i)

Page 21

SCC - Karlsruhe Institute of Technology - H.Tofighian OpenFOAM LES Tutorial

node_pos.push_back(cellCenters[i].x());
node_pos.push_back(cellCenters[i].y());
node_pos.push_back(cellCenters[i].z());

}

// Create a LibTorch tensor for node positions with shape [nCells, 3]

torch :: Tensor node_positions = torch:: from_blob (node_pos.data(), {
static_cast <long>(nCells), 3}, torch::kFloat32).clone(); // Shape: [num_nodes,
3]
// Save tensors
// Save node features
{
fileName nodeFile (outputDir/”node_features_-” + runTime.timeName () + 7.
pt”);
auto node_bytes = torch:: pickle_save(node_features);
std :: ofstream fout (nodeFile, std::ios::out | std::ios::binary);
fout . write (node_bytes.data(), node_bytes.size());
fout . close ();
Info<< ”Saved node features to 7 << nodeFile << endl;
}
// Save edge indices
{
fileName edgeFile (outputDir/” edge_-index-” 4 runTime.timeName() + 7 .pt”
)
auto edge_bytes = torch:: pickle_save (edge_index);
std :: ofstream fout (edgeFile, std::ios::out | std::ios::binary);
fout.write (edge_bytes.data(), edge_bytes.size());
fout . close ();
Info<< ”Saved edge indices to 7 << edgeFile << endl;
}
// Save node positions
{
fileName posFile(outputDir/” node_positions-” + runTime.timeName() + 7.
pt”);

auto pos_bytes = torch:: pickle_save(node_positions);

std :: ofstream fout(posFile, std::ios::out | std::ios::binary);
fout . write(pos_bytes.data(), pos_bytes.size());

fout.close ();

Info<< ”Saved node positions to 7 << posFile << endl;

}
Info << ”Execution complete.” << nl;

return 0;

// sk 5k % ok % ok %k ok %k 3k ok 3k ok 3k ok % ok %k ok %k 3k %k 3k ok 3k ok 3k ok %k ok %k 5k ok 3k ok 3k ok % ok % ok %k ok %k 3k ok 3k ok % ok % ok % ok %k ok ok 3k ok % ok % ok % ok %k ok K k kK kK //

Page 22

	Introduction
	Case Setup for pimpleFoam
	Directory Structure
	Initial and Boundary Conditions (0/ Directory)
	Velocity Field (U)
	Pressure Field (p)
	Turbulence Properties (e.g. nut, k (and epsilon for k-epsilon) model)

	Physical Properties (constant/ Directory)
	Transport Properties
	Turbulence Properties
	polyMesh Directory

	Solver Settings (system Directory)
	Control Dictionary (controlDict)
	Finite Volume Schemes (fvSchemes)
	Finite Volume Solution (fvSolution)

	Initial and Inlet Boundary Condition for LES
	Importance of Turbulent Inlet Conditions
	Approaches for Generation of Turbulent Fluctuations in OpenFOAM
	Synthetic Turbulence Generation
	Recycling-Method (Mapped Boundary Condition)

	Numerical Dissipation in LES
	Post-processing
	Field Averaging
	Point Probes
	Surface Sampling
	Q–Criterion and Iso–Surface Sampling
	Computing Q with fieldFunctionObjects
	Extracting an Iso–Surface of Q
	Making animation of Results

	Post-processing in Python

