This course material is free: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation. It is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

More details about the GNU General Public License can be seen at:
<http://www.gnu.org/licenses/>.

An Introduction to Linear
Solvers in OpenFOAM

Gregor Olenik (gregor.olenik@tum.de)
Chair of Computational Mathematics,
TUM School of Computation
Technical University of Munich

https://exasim-project.com/

Motivation

* Mainly concerned about system/fvSolution

e Build an understanding of different solver options and settings
* Ideally help to improve computational cost and speed up

* Encourage to measure and experiment with solvers

Won'’t cover:
* In about one hour can’t present everything in great detail
* GPU solver, domain decomposition, workflows

Content

* Motivation

e Start with some theory and show where to select things in
OpenFOAM

e Fundamentals Iterative Methods

* Preconditioners
* Multigrid Methods

Fundamentals

* Good introduction in Versteeg and Malalasekera:
* Transport Eqn. (PDE) = Computational Grid = Set of linear equations of the Form

Ax=b
d d(.d —
¢ 1 : | F 1
—(pud) =—(I“— ' : ! : ! appp—aydy —agpp =D
dx dy\ dy wow P ¢ E = Ax=Db
PDE Computational Grid Linear System

e How to solve Ax=b for x ?

Gaussian Elimination |

— 11

2x+y — z
1/2y +1/2z

— Z

Ry

2x + y+ z =38

1/2y+1/2z= 1

(—2)=1

Remarks:

Usually performed via LU
decomposition

In the general case, solving Ax=b
of size n by Gaussian elimination
requires 2n”*3/3 + O(n"2)
operations. And requires n*2 + n
storage.

Using GE/LU has some drawbacks
for sparse cases.

Data dependencies -> limited
parallelization potential

Works for poorly conditioned
cases

Gaussian Elimination |l

* A=LU=LUx =bwithUx =y
* Solve:

e 1.Ly =bfory

« 2.Ux =y forx
e Obtain L and U via LU decomposition

a w! 1 OT u u’ u u' 1
note: 1 ="V
v A "1 o o UW) ul | lu’ +LOTW repeat for lul + LU = A" —IuT
e Letscheck LIUT = A" —1uT 1 101
- Example: |0l X[1 0 1]= (0 0 O
* Ju’ is an outer product 1 1 0 1

« A’ and lu! have non-zeros at different locations = number of non-zeros (nnz) per row decreases,
fill-in

Sparsity

First example all rows had entries (dense)

For simulations matrix entries depend on
computational grid/stencil.

Storing only non-zero matrix entries can be
beneficial. Assume a 2D grid with 1M cells ->
1Mx1M matrix, double precision,

* dense: 9TByte (n_rows**2 * sizeof(double))

* COO: (values + row and column index 32bit int)
40MByte (n_rows*nnz_row*sizeof(double) +
2n_rows*nnz_row*sizeof(int))

Gauss elimination on sparse matrices will have
larger storage requirement compared to original
system. Makes GE impractical for larger problems,
even for sparse matrix formats.

Sparsity Pattern 25x25 Matrix

5x5 Computational Grid
5pt. Stencil

Iterative Methods

Task:

* Find solution (x) to Ax = b

« Constraint: Problem: finding A~ 1 is expensive (Gaussian Elimination)
and has huge storage requirements

* |dea: repeatedly improve a guessed solution x
* Ingredients:
* Errorre = X" —X

« Norm:u =||u|| = vuu = [|u||’? = u-u needed for stopping criterion
* Residual:r = b—Ax ife=0=r=0and ||r]|]| =0

Iterative Methods

* Principle methods

Direct x=A"1b - Storage

Richardson x™H = x™ 4 o (b—Ax™) + Storage nnz + 2*n_Dofs
Jacobi x™H=p~1(p —-L 4+ U) x™ + Parallel

Gauss-Seidel L.x™ =p —Ux™ + Convergence, - Sequential

Jacobi vs. Gauss-Seidel vs. Richardson

Jacobi

solve for x_n repeatedly
wo updates

1_
X = (by —(c12X5 + c13x5)) /c1p

1_
X = (by — (1 XT + c3x5) /22

1_
X = (b3 —(c31 X7 + c32651) /€33

+ Parallel

C11X1+ C12Xy + c13 X3 =Dy
Co1X1 + CopXy + Cy3X3 = by

C31X1 + C32X + C33X3 = b3

Gauss-Seidel

solve for x_n repeatedly
w updates

1 _
xTH = (by —(c12X5 + c13x5)) /e

xrzn“ = (b, —(c21x’1”+1 + C23%%))/C22

X = (bg —(c31xH + c3x0) /33

+ Better convergence
- Sequential

Richardson

subtract residual

m+1 _ ,.m m m m
X7 =x —a)(b1 — C11X] — C12%; —c13x3)

m+1 _ ,m m m m
X3 =X —w(bz — Cy1X] — CppXy —c23x3)

m+1 _ ,m m m m
X3 =X —w(b3 — €31X] — C3%; —c33x3)

+ Parallel

Richardson lteration vs. Gaussian Elimination

Which does more work, for a typical CFD matrix of size nxn

Richardson
o x™L =™+ w(b—Ax™)
1SpMV, 2 VU, 1 SVP

Assume 7pt stencil

SpMV: 2n nyzp

* Niter (14N +2n+n) = 1700y,
+ VU, SVP Embarrassingly parallel
+ SpMV is parallelizable

Gaussian Elimination

LU Decomposition

Only 3 Bands to eliminate

Multiplication of pivot row (4 + Fill(row))

Subtraction of pivot row 2

2 Fill ins per subtraction

Back Substitution

e 3*n*8*2 + Fill

Total =3n4 + Fill + 42n = 56n + Fill
- Sequential/Hard to parallelize

Interlude Roofline Model

— Modern machines can perform floating point operations much faster then moving data into registers
— Arithmetic Intensity = Computational Work [FLOPS] / Amount of memory moved [Bytes]

Performance [GFLOPS]

A
J Bound based on bandwidth -
a1 2 Bound based on peak performance
2 -
[
1 . APP,
App,
1/2 -
L]
1/4 - APP,

T L] L) T L) L) L) 1 Cal

1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]

Krylov Methods

 How to improve basic iterative methods?
* Richardson: x,,,1 =x,, + w(b—Ax,,) =x,, + ap,,
* Motivation for Krylov methods find optimal a and search direction p

e NB:withxy =0 —x; =7(, X, = 2rq—Ary ... thus x,. € span{r,, Ar,...A* 11y} which is called Krylov

(sub)space
* For x,,,4find @ such that error ||x—x,,,,1]| ZA is minimal, where ||a||, = V(aTa) and ||a]| , =V (aT Aa)

* A needs to be SPD to satisfy the A norm

T
T‘ka

i —_— 2 —
e Il =0 oKk

* Pick next search direction from Krylov space such that next search direction is orthogonal to all previous
search directions

Conjugate Gradient Method (CG)

» See literature for full derivation, eg.: A. Meister, Y.

ro := b — Axg
Saad or W. Hackbusch

if ry is sufficiently small, then return x; as the result
Po ‘= To

k=10

repeat

T
I‘k r

P Apy
Xk+1 = X T 0Py
i1 =T, — apAp;
if ry.; is sufficiently small, then exit loop

ap

rLlrl’fﬂ
AL e
r, Tk
Pii1 = Tit1 + BrPy
k:=k+1

end repeat
return x;,, as the result

// system/fvSolution

solver PCG;
preconditioner
tolerance
relTol O;
maxIter 5000;
minlter 0O;

}

pFinal

{

$p;

tolerance 1e-06;

relTol O;

}

none;

0.0001;

/] 4

/] 3
/] 4

/]
/]2
/] 3
/] 4
//5
/] 6

1. Selects Preconditidioned CG (PCG):

« other options GAMG PBiCGStab PCG PPCG PPCR
smoothSolver (via banana method):

* PCG typically a very simple and robust solver for poisson type equations,
scales up to 10k per Core

* GAMG typically faster but might experience worse scaling or issues when

2. Selects Preconditioner:
« options none DIC FDIC GAMG diagonal
* will talk about preconditioners in a moment
3. Absolute value of residual norm when to stop iteration process.

* Becarefulthisisnot ||r]|_2=|]|Ax-b|]_2

e typical values for pressure 1le-4 ... 1le-6. If grid density increases tolerance
might need to be adapted

4. Stop when a given ratio is reached a =r/r;

* typical use case, outer iterations for projectio methods, predictor corrector
methods like PIMPLE. Intermediate iterations might not need fully converged
solution.

* lIgnored if O, at least in pFinal it should be 0

5. Stop at n iterations (default 1000), to avoid dead lock. Be careful 1000 GAMG
iterations are much more expensive.

* treat solver as not converged if maxlter is reached

6. perform at least minlter iterations.
* sometimes used to fix number of iterations for benchmarks minlter=maxlter
* be careful in production (not recommended IMHO)

Preconditioner

CG might fail to converge if condition number is large.

Convergence of behavior CG:

<2 (MHD-L)
lella <2 (D1 el

Idea: Solve equivalent system with lower condition
number

M Aax =M~1p

easy to see that M=A is best preconditioner, but requires
inverse of A. In PCG, however only the residual vector is

preconditioned z =M ror Mz =r
Extra effort to generate M1

Again, see literature for more details

Some (black box) preconditioners:

Diagonal (cheap but usually not very effective): M =
D,D71 =d;1
Incomplete LU (ILU or in OF DILU) do LU decomposition
of A but keep only values which where previously at a
non-zero location (no fill in). Works for non-symmetric A
Incomplete Cholesky (IC or in OF DIC) for symmetric A:
M=LLT > LLTz=r
* Factorize A into LLAT using modified Gaussian
Elimination, but discard any fill-in
« 1.Solve Ly =rfory 2. Solve LTz = y Simple to solve
by backward substitution

Convergence Rates

Some observations:

10° 1 . :
* residual norm does not behave monotonically, even
10-1 - though error decreases monotonically. We minimize
error but use norm as stopping criterion

E 1074 —— Scalar Jacobi IR * Preconditioner can improve convergence, but many
2 e G factors influence behavior;
© 107 3 — I LG * ordering, decomposition
2 ‘ EACICEG * Note that less iterations does not necessarily mean
e 073 less time.

1072 5

1079 1

0 100 200 300 400 500

Iterations

Non symmetric variants

CG only works for symmetric matrices (remember requirement for A-norm).
Momentum, scalar transport equation don’t yield symmetric linear system.

 Linear solver in OF for non-symmetric cases: GAMG, PBiCG, PBiCGStab,
smoothSolver

Idea of BiCG methods:
* Solve a equivalent symmetric adjoint system [0 AT] m = [B]
A 0 ILx b

* More work compared CG and some other challenges
* smoothSolver just a wrapper around:
DILU DILUGaussSeidel GaussSeidel nonBlockingGaussSeidel symGaussSeidel
* GPU capable solver https://github.com/hpsim/OGL https://doi.org/10.1007/s11012-024-01806-1

https://github.com/hpsim/OGL

solver
preconditioner
tolerance
relTol

maxIter

PBiCGStab;
DILU;
1e-08;
0.1;

1000;

solver
smoother
tolerance
relTol

~~T0

smoothSolver; solver GAMG;
GaussSeidel; smoother GaussSeidel;
1e-8; tolerance 1e-7;

0.1; relTol 0.01;

Micro Benchmarks

A collection of OpenFOAM cases to benchmark in the exasim project. The following cases are available:

LidDrivenCavity3D: Reusage of case from OpenFOAM HPC Technical Committee HPC-Benchmark-Suite

WindsorBody: Case 1 from AutoCFD4-Workshop coarse mesh
PeriodicChannelFlow: Re=400, Lx=0.75, Lz=0.4
atmFlatTerrain: Athmospheric boundary layer over flat terrain

ImpingingJet: Reproduction of DNS case of Dairay et al. (2015), Journal of Fluid Mechanics 764, pp. 362 - 394
The following case additioanlly tested within EXASIM contains a proprietary airfoil shape and is only shared with

the partners. Contact: Hendrik Hetmann. A non-proprietary version might be uploaded here in the future.

MexicoRotor: Reproduction of MexicoRotor wind tunnel tests K. Boorsma, J.G. Schepers (2014), New Mexico

Experiment: Preliminary Overview with Initial Validation, ECN Edition 15, Vol.48

On github: exasim-project/micro-benchmarks

LOO

G.75

0.25

Multigrid |

lterations

Error components for Jacobi Iteration
Source: Briggs et al. 2000

o et
- -

L L LT/

"'"""""
2 77777777 2
S """ 77777 S
(T T T T T T T T T T 77

\
A

R2 "

A

U

s
IP2

Level 1

Level 2

Level 3

Initial Guess

Error after 1 GS on FG

06
04 l
02 :
0
-02
0.4
-0

- Error after 3 GS on FG Errorafter 1GSon CG

06|
04] :
02|
0
-02 7
-04
06

06
04
0.2 .
0
N W\/\/\/\/\/\
0.4
_06

Error after 3 GS on CG

Error after 3 GS on FG

Source: Briggs et al. 2000

* Error always wrt. fine grid.

e GS on FG becomes less effective
after few iterations

* Switch to CG (Restriction) for further
iterations

* Projection (Prolongation) of CG
solution on FG has spurious
oscilations

* Perform post smoothing on FG.

Multigrid I

PY Ma ny ﬂavo rs Of M u |t|gr|d: N MFultigrid V;Cycle: SOI:;ing PHI in FF;DEf(PHI) ? F N
* Geometric Multigrid (GAMG) if geometric gumre
data for restriction and prolongation is B

available
* Algebraic Multigrid (AMG) otherwise

111
Gauss Seidel

pute ~esiaua
| i S

 Various cycles V, W

 All kinds of smoothers are possible
Gauss-Seidel, pre, post-smoothing, or
both Repeat Unti Comvergerce

Multigrid Options

// fvSolution

P

{
solver GAMG;
tolerance 1e-06;
relTol 0.1;
smoother GaussSeidel;

// alternative smoother

// DIC DICGaussSeidel FDIC
GaussSeidel nonBlockingGaussSeidel
symGaussSeidel

}

// GAMGSolver.C

cacheAgglomeration_(true),
nPreSweeps_(0),
preSweepsLevelMultiplier_(1),
maxPreSweeps_(4),
nPostSweeps_(2),
postSweepsLevelMultiplier_(1),
maxPostSweeps_(4),
nFinestSweeps_(2),
interpolateCorrection_(false),
scaleCorrection_(matrix.symmetric

(),

directSolveCoarsest_(false),

How to choose solver

* No general answer, measure performance (timings) for your problem
* (Don’t be afraid of trying out solver, in the worst case fail to converge)

* Check also whether results are independent of tolerances, sample enough data for
statistics

PeriodicChannel (4GPU per node)

0.20 A

0.15 4

0.10 4

max(Urms) [m/s]

0.05 A

0.00 A

0 10 20 30 40 50 60 70 80
Time t [s]

* GAMG for pressure, smoothSolver for Momentum (transient). For larger cases/many
subdomains CG might be better. BiCGStab non-symmetric, steady-state.

FVOPS per node [s 1]

SAEE L

Some Benchmark results

atmFlatTerrain
cells/Core 1.5e+04 7.5¢+03 5.0e+03 3.8e+03 3.0e+03 2.5¢+03 2.1e+03 1.9e+03

cells/GPU 2.9e+05 1.4e+05 9.5e+04 7.le+04 5.7e+04 4.8e+04 4.1e+04 3.6e+04

PCG

GAMG

PCG 2025

GAMG 2025
BJ+GKGCG 2025
MG+GKOCG 2025

]05.

2 % 16

0 2 4 6 8 10
nodes

* Scaling study required

FVOPS per node [s 1]

ImpingingJet
cells/Core 5.8e+04 2.9e+04 19e+04 14e+04 12e+04 9.6e+03 8.2e+03 7.2e+03

cells/GPU 1.1e+06 55e+05 3.7e+05 2.7e+05 2.2e+05 1.8e+05 1.6e+05 1.4e+05

106
N

—— PCG

— GAMG
]05] |=—=— PCG 2025

- (GAMG 2025

o= B J+GKCCG 2025

= MG+GKOCG 2025

0 10 20 30 4 50 60 70 80

Nodes

* Typically GAMG better performance on fewer nodes

3.8x10°
3.6x10°
F3.4x105
e
@ 3.2x10° —e— PCG
§ —— GAMG
& 3x10° == BJ+GKOCG 2025
7y —e— MG+GKOCG 2025
o
EE 2.8x10°
2.6x10°

Mexico ALM
cells/Core 35e+04 17e+04 12e+04 87e+03 7.0e+03 5.8e+03
1.3e+05 1.1e+05

cells/GPU 6.6e+05 3.3e+05 2.2e+05 1.7e+05

10 12 14 16 18 20 22 24 26
nodes

0 2 4 6 8

Performance tweaks

* Renumber mesh can improve cache access on unstructured meshes
* Good meshes can have a huge impact on performance

* 10000-30000 cells per core are a reasonable number for domain
decomposition (cache), see Galeazzo et. al

* Check DD for load balancing

* For large cases with many subdomains communication can become
the bottleneck, switch from GAMG -> PPCG

* Don’t assume mpirun —bind-to core

Literature

* Meister, Andreas. Numerik Linearer Gleichungssysteme. Vol. 4. Wiesbaden: Vieweg+ Teubner, 2011.

* Saad, Yousef. Iterative methods for sparse linear systems. Society for Industrial and Applied
Mathematics, 2003.

* Hackbusch, Wolfgang. Iterative solution of large sparse systems of equations. Vol. 95. New York:
Springer, 1994,

e Galeazzo, Flavio Cesar Cunha, et al. "Understanding superlinear speedup in current HPC architectures."
IOP Conference Series: Materials Science and Engineering. Vol. 1312. No. 1. IOP Publishing, 2024.

* Briggs, William L., Van Emden Henson, and Steve F. McCormick. A multigrid tutorial. Society for
Industrial and Applied Mathematics, 2000.

* Olenik, Gregor, et al. "Towards a platform-portable linear algebra backend for OpenFOAM." Meccanica
(2024): 1-14.

e Gartner, Jan Wilhelm, et al. "Testing Strategies for OpenFOAM Projects." OpenFOAM® Journal 5
(2025): 115-130.

