
1

This course material is free: you can redistribute it and/or modify it under the

terms of the GNU General Public License as published by the Free Software

Foundation. It is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

More details about the GNU General Public License can be seen at:

<http://www.gnu.org/licenses/>.

An Introduction to LinearSolvers in OpenFOAM
Gregor Olenik (gregor.olenik@tum.de)

Chair of Computational Mathematics,
TUM School of Computation

Technical University of Munich
https://exasim-project.com/

Motivation
• Mainly concerned about system/fvSolution
• Build an understanding of different solver options and settings
• Ideally help to improve computational cost and speed up
• Encourage to measure and experiment with solvers
Won’t cover:
• In about one hour can’t present everything in great detail
• GPU solver, domain decomposition, workflows

Content
• Motivation
• Start with some theory and show where to select things inOpenFOAM
• Fundamentals Iterative Methods
• Preconditioners
• Multigrid Methods

Fundamentals
• Good introduction in Versteeg and Malalasekera:• Transport Eqn. (PDE) ⇨ Computational Grid ⇨ Set of linear equations of the FormAx=b

𝑑
𝑑𝑥 (𝜌𝑢𝜙) = 𝑑

𝑑𝑦 𝛤 𝑑𝜙
𝑑𝑦 𝑎𝑃𝜙𝑃 − 𝑎𝑊𝜙𝑊 − 𝑎𝐸𝜙𝐸 = b⇨ Ax = b

PDE Computational Grid Linear System

• How to solve Ax=b for x ?

Gaussian Elimination I

Hackbusch

2𝑥 + 𝑦 − 𝑧 = 8
− 3𝑥 − 𝑦 + 2𝑧 = − 11
− 2𝑥 + 𝑦 + 2𝑧 = − 3

2𝑥 + 𝑦 − 𝑧 = 8
1 2 𝑦 + 1 2 𝑧 = 1

 2𝑦 + 𝑧 = 5

2𝑥 + 𝑦 − 𝑧 = 8
1 2 𝑦 + 1 2 𝑧 = 1

 − 𝑧 = 1

2𝑥 + 𝑦 + 𝑧 = 8
1 2 𝑦 + 1 2 𝑧 = 1

 − 𝑧 = 1

2𝑥 + 𝑦 = 7
 1 2 𝑦 = 3

 𝑧 = − 1

𝑥 = 2
 𝑦 = 3

 𝑧 = − 1

𝑅1
𝑅2 + 3 2 𝑅1 → 𝑅∗2
𝑅3 + 𝑅1 → 𝑅∗3

Remarks:– Usually performed via LUdecomposition– In the general case, solving Ax=bof size n by Gaussian eliminationrequires 2n^3/3 + O(n^2)operations. And requires n^2 + nstorage.– Using GE/LU has some drawbacksfor sparse cases.– Data dependencies -> limitedparallelization potential– Works for poorly conditionedcases

Gaussian Elimination II
• A = LU ⇨ LUx = b with Ux = y
• Solve:• 1. Ly = b for y

• 2. Ux = y for x
• Obtain L and U via LU decomposition

• Lets check L1U1 = A′ − lu𝑇
• lu𝑇 is an outer product
• A’ and lu𝑇 have non-zeros at different locations ⇨ number of non-zeros (nnz) per row decreases,fill-in

Example: 101 × [1 0 1] = 1 0 10 0 01 0 1

note: 𝐥 = 1
𝑢 𝐯

repeat for 𝑙𝑢𝑇 + 𝐿1𝑈1 = A′ − lu𝑇

Sparsity
• First example all rows had entries (dense)
• For simulations matrix entries depend oncomputational grid/stencil.
• Storing only non-zero matrix entries can bebeneficial. Assume a 2D grid with 1M cells ->1Mx1M matrix, double precision,• dense: 9TByte (n_rows**2 * sizeof(double))• COO: (values + row and column index 32bit int)40MByte (n_rows*nnz_row*sizeof(double) +2n_rows*nnz_row*sizeof(int))
• Gauss elimination on sparse matrices will havelarger storage requirement compared to originalsystem. Makes GE impractical for larger problems,even for sparse matrix formats.

Sparsity Pattern 25x25 Matrix 5x5 Computational Grid5pt. Stencil

Iterative Methods
Task:
• Find solution (x) to 𝐴𝑥 = 𝑏
• Constraint: Problem: finding 𝐴−1 is expensive (Gaussian Elimination)and has huge storage requirements
• Idea: repeatedly improve a guessed solution x• Ingredients:

• Error: 𝐞 = 𝐱∗ − 𝐱
• Norm: u = ||𝐮|| = 𝒖∙𝒖 ⇨ ||𝐮||2 = 𝒖∙𝒖 needed for stopping criterion• Residual: 𝐫 = 𝐛 − 𝐀𝐱 if e = 0 ⇨ r=0 and ||r|| = 0

Iterative Methods
• Principle methods

Direct 𝑥 = 𝐴−1𝑏 - Storage
Richardson 𝑥𝑚+1 = 𝑥𝑚 + 𝜔 𝑏−𝐴𝑥𝑚 + Storage nnz + 2*n_Dofs
Jacobi 𝑥𝑚+1= 𝐷−1 𝑏 −𝐿 + 𝑈 𝑥𝑚 + Parallel
Gauss-Seidel 𝐿∗𝑥𝑚+1 = 𝑏 −𝑈𝑥𝑚 + Convergence, - Sequential

Jacobi vs. Gauss-Seidel vs. Richardson

Jacobi
𝑥𝑚+11 = (𝑏1 −(𝑐12𝑥𝑚2 + 𝑐13𝑥𝑚3))/𝑐11

𝑥𝑚+12 = (𝑏2 −(𝑐21𝑥𝑚1 + 𝑐23𝑥𝑚3))/𝑐22

𝑥𝑚+13 = (𝑏3 −(𝑐31𝑥𝑚1 + 𝑐32𝑥𝑚2))/𝑐33

Gauss-Seidel
𝑥𝑚+11 = (𝑏1 −(𝑐12𝑥𝑚2 + 𝑐13𝑥𝑚3))/𝑐11

𝑥𝑚+12 = (𝑏2 −(𝑐21𝑥𝑚+11 + 𝑐23𝑥𝑚3))/𝑐22

𝑥𝑚+13 = (𝑏3 −(𝑐31𝑥𝑚+11 + 𝑐32𝑥𝑚+12))/𝑐33

𝑐11𝑥1 + 𝑐12𝑥2 + 𝑐13 𝑥3 = 𝑏1
𝑐21𝑥1 + 𝑐22𝑥2 + 𝑐23𝑥3 = 𝑏2
𝑐31𝑥1 + 𝑐32𝑥2 + 𝑐33𝑥3 = 𝑏3

𝑥𝑚+11 = 𝑥𝑚 − 𝜔 𝑏1 − 𝑐11 𝑥𝑚1 − 𝑐12 𝑥𝑚2 − 𝑐13 𝑥𝑚3

𝑥𝑚+12 = 𝑥𝑚 − 𝜔 𝑏2 − 𝑐21 𝑥𝑚1 − 𝑐22 𝑥𝑚2 − 𝑐23 𝑥𝑚3

𝑥𝑚+12 = 𝑥𝑚 − 𝜔 𝑏3 − 𝑐31 𝑥𝑚1 − 𝑐32 𝑥𝑚2 − 𝑐33 𝑥𝑚3
+ Parallel + Better convergence- Sequential

solve for x_n repeatedlywo updates solve for x_n repeatedlyw updates
Richardson

subtract residual

+ Parallel

Richardson Iteration vs. Gaussian Elimination

Richardson
• 𝑥𝑚+1 = 𝑥𝑚 + 𝜔 𝑏−𝐴𝑥𝑚
• 1SpMV, 2 VU, 1 SVP
• Assume 7pt stencil
• SpMV: 2𝑛 𝑛𝑁𝑍𝑅• 𝑛𝑖𝑡𝑒𝑟 14 𝑛 + 2𝑛 + 𝑛 = 17𝑛𝑛𝑖𝑡𝑒𝑟
+ VU, SVP Embarrassingly parallel
+ SpMV is parallelizable

Gaussian Elimination
LU Decomposition
• Only 3 Bands to eliminate
• Multiplication of pivot row (4 + Fill(row))
• Subtraction of pivot row 2
• 2 Fill ins per subtraction
Back Substitution
• 3*n*8*2 + Fill
Total = 3𝑛4 + 𝐹𝑖𝑙𝑙 + 42𝑛 = 56𝑛 + Fill
- Sequential/Hard to parallelize

Which does more work, for a typical CFD matrix of size nxn

Interlude Roofline Model
– Modern machines can perform floating point operations much faster then moving data into registers– Arithmetic Intensity = Computational Work [FLOPS] / Amount of memory moved [Bytes]

Krylov Methods
• How to improve basic iterative methods?
• Richardson: 𝑥𝑚+1 = 𝑥𝑚 + 𝜔 𝑏−𝐴𝑥𝑚 = 𝑥𝑚 + 𝛼𝑝𝑚• Motivation for Krylov methods find optimal 𝛼 and search direction p
• NB: with 𝑥0 = 0 → 𝑥1 = 𝑟0 , 𝑥2 = 2𝑟0−𝐴𝑟0 … thus 𝑥𝑘∊ 𝑠𝑝𝑎𝑛{𝑟0 , 𝐴𝑟0…𝐴𝑘−1𝑟0} which is called Krylov

(sub)space
• For 𝑥𝑚+1find 𝛼 such that error 𝑥−𝑥𝑚+1 2A is minimal, where 𝑎 2 = √(𝑎𝑇𝑎) and 𝑎 𝐴 = (𝑎𝑇𝐴𝑎)
• A needs to be SPD to satisfy the A norm
• 𝑑

𝑑𝛼 𝑥−𝑥𝑚+1 2A = 0 → 𝑟𝑇𝑘𝑟𝑘
𝑟𝑇𝑘𝐴𝑟𝑘• Pick next search direction from Krylov space such that next search direction is orthogonal to all previoussearch directions

Conjugate Gradient Method (CG)
• See literature for full derivation, eg.: A. Meister, Y.Saad or W. Hackbusch

// system/fvSolution
p
{
solver PCG; // 1
preconditioner none; // 2
tolerance 0.0001; // 3
relTol 0; // 4
maxIter 5000; // 5
minIter 0; // 6

}
pFinal // 4
{
$p;
tolerance 1e-06; // 3
relTol 0; // 4
}

1. Selects Preconditidioned CG (PCG):• other options GAMG PBiCGStab PCG PPCG PPCR
smoothSolver (via banana method):• PCG typically a very simple and robust solver for poisson type equations,scales up to 10k per Core• GAMG typically faster but might experience worse scaling or issues when2. Selects Preconditioner:• options none DIC FDIC GAMG diagonal• will talk about preconditioners in a moment3. Absolute value of residual norm when to stop iteration process.• Be careful this is not ||r||_2 = ||Ax-b||_2• typical values for pressure 1e-4 ... 1e-6. If grid density increases tolerancemight need to be adapted4. Stop when a given ratio is reached 𝛼 = 𝑟0 𝑟𝑖• typical use case, outer iterations for projectio methods, predictor correctormethods like PIMPLE. Intermediate iterations might not need fully convergedsolution.• Ignored if 0, at least in pFinal it should be 05. Stop at n iterations (default 1000), to avoid dead lock. Be careful 1000 GAMGiterations are much more expensive.• treat solver as not converged if maxIter is reached6. perform at least minIter iterations.• sometimes used to fix number of iterations for benchmarks minIter=maxIter• be careful in production (not recommended IMHO)

Preconditioner
• CG might fail to converge if condition number is large.
• Convergence of behavior CG:

𝑒 𝐴 ≤ 2 𝜅 𝐴 −1
𝜅 𝐴 +1

𝑘 𝑒0 𝐴

• Idea: Solve equivalent system with lower conditionnumber
𝑀−1𝐴𝑥 = 𝑀−1𝑏

• easy to see that M=A is best preconditioner, but requiresinverse of A. In PCG, however, only the residual vector ispreconditioned 𝑧 = 𝑀−1𝑟 or 𝑀𝑧 = 𝑟
• Extra effort to generate 𝑀−1
• Again, see literature for more details

Some (black box) preconditioners:• Diagonal (cheap but usually not very effective): 𝑀 =𝐷, 𝐷−1 = 𝑑−1𝑖𝑖• Incomplete LU (ILU or in OF DILU) do LU decompositionof A but keep only values which where previously at anon-zero location (no fill in). Works for non-symmetric A• Incomplete Cholesky (IC or in OF DIC) for symmetric A:𝑀 = 𝐿𝐿𝑇 → 𝐿𝐿𝑇𝑧 = 𝑟• Factorize A into LL^T using modified GaussianElimination, but discard any fill-in• 1. Solve Ly = r for y 2. Solve 𝐿𝑇𝑧 = 𝑦 Simple to solveby backward substitution

Convergence Rates

Iterations

Res
idua

Nor
m

Some observations:• residual norm does not behave monotonically, eventhough error decreases monotonically. We minimizeerror but use norm as stopping criterion• Preconditioner can improve convergence, but manyfactors influence behavior;• ordering, decomposition• Note that less iterations does not necessarily meanless time.

Non symmetric variants
• CG only works for symmetric matrices (remember requirement for A-norm).Momentum, scalar transport equation don’t yield symmetric linear system.
• Linear solver in OF for non-symmetric cases: GAMG, PBiCG, PBiCGStab,smoothSolver
• Idea of BiCG methods:

• Solve a equivalent symmetric adjoint system 0 𝐴𝑇
𝐴 0 𝑥𝑥 = 𝑏𝑏• More work compared CG and some other challenges

• smoothSolver just a wrapper around:
DILU DILUGaussSeidel GaussSeidel nonBlockingGaussSeidel symGaussSeidel

• GPU capable solver https://github.com/hpsim/OGL https://doi.org/10.1007/s11012-024-01806-1

https://github.com/hpsim/OGL

U
{
solver PBiCGStab;
preconditioner DILU;
tolerance 1e-08;
relTol 0.1;
maxIter 1000;
}

U
{
solver smoothSolver;
smoother GaussSeidel;
tolerance 1e-8;
relTol 0.1;

}

p
{
solver GAMG;
smoother GaussSeidel;
tolerance 1e-7;
relTol 0.01;

}

On github: exasim-project/micro-benchmarks

Multigrid I

Error components for Jacobi IterationSource: Briggs et al. 2000

• Error always wrt. fine grid.
• GS on FG becomes less effectiveafter few iterations
• Switch to CG (Restriction) for furtheriterations
• Projection (Prolongation) of CGsolution on FG has spuriousoscilations
• Perform post smoothing on FG.

Initial Guess Error after 1 GS on FG

Error after 3 GS on FG Error after 1 GS on CG

Error after 3 GS on CG Error after 3 GS on FG

Source: Briggs et al. 2000

• Many flavors of Multigrid:• Geometric Multigrid (GAMG) if geometricdata for restriction and prolongation isavailable• Algebraic Multigrid (AMG) otherwise
• Various cycles V, W
• All kinds of smoothers are possibleGauss-Seidel, pre, post-smoothing, orboth

Multigrid II

Multigrid Options
// fvSolution
p
{

solver GAMG;
tolerance 1e-06;
relTol 0.1;
smoother GaussSeidel;

// alternative smoother
// DIC DICGaussSeidel FDIC
GaussSeidel nonBlockingGaussSeidel
symGaussSeidel
}

// GAMGSolver.C

cacheAgglomeration_(true),
nPreSweeps_(0),
preSweepsLevelMultiplier_(1),
maxPreSweeps_(4),
nPostSweeps_(2),
postSweepsLevelMultiplier_(1),
maxPostSweeps_(4),
nFinestSweeps_(2),
interpolateCorrection_(false),
scaleCorrection_(matrix.symmetric
()),
directSolveCoarsest_(false),

How to choose solver
• No general answer, measure performance (timings) for your problem
• (Don’t be afraid of trying out solver, in the worst case fail to converge)
• Check also whether results are independent of tolerances, sample enough data forstatistics

• GAMG for pressure, smoothSolver for Momentum (transient). For larger cases/manysubdomains CG might be better. BiCGStab non-symmetric, steady-state.

Some Benchmark results

• Typically GAMG better performance on fewer nodes
• Scaling study required

Performance tweaks
• Renumber mesh can improve cache access on unstructured meshes
• Good meshes can have a huge impact on performance
• 10000-30000 cells per core are a reasonable number for domaindecomposition (cache), see Galeazzo et. al
• Check DD for load balancing
• For large cases with many subdomains communication can becomethe bottleneck, switch from GAMG -> PPCG
• Don’t assume mpirun –bind-to core

Literature
• Meister, Andreas. Numerik Linearer Gleichungssysteme. Vol. 4. Wiesbaden: Vieweg+ Teubner, 2011.
• Saad, Yousef. Iterative methods for sparse linear systems. Society for Industrial and AppliedMathematics, 2003.
• Hackbusch, Wolfgang. Iterative solution of large sparse systems of equations. Vol. 95. New York:Springer, 1994.
• Galeazzo, Flavio Cesar Cunha, et al. "Understanding superlinear speedup in current HPC architectures."IOP Conference Series: Materials Science and Engineering. Vol. 1312. No. 1. IOP Publishing, 2024.
• Briggs, William L., Van Emden Henson, and Steve F. McCormick. A multigrid tutorial. Society forIndustrial and Applied Mathematics, 2000.
• Olenik, Gregor, et al. "Towards a platform-portable linear algebra backend for OpenFOAM." Meccanica(2024): 1-14.
• Gärtner, Jan Wilhelm, et al. "Testing Strategies for OpenFOAM Projects." OpenFOAM® Journal 5(2025): 115-130.

