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Problem formulation
Interpolation and regression

Given N function values y = {xn, f(xn) + εn}Nn=1, we want to learn,
or approximate, the underlying function f : D → R, D ⊆ Rd.

I Real data y usually comes with noise, e.g. εn ∼ N(0, δ2) i.i.d..

I Synthetic data y from computer runs is often noise-free, i.e. εn ≡ 0.

We want to find, or predict, f(x), for x ∈ D \ {xn}Nn=1, i.e. we want
to perform regression or interpolation.
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Problem formulation
Motivation and applications

This abstract framework appears in numerous disciplines and applications:

Data fitting:

The function f linking input x to output y is unknown.

Since f(xn) is obtained from real-world observations, it contains
measurement errors and is hence noisy.

e.g. predicting water pollution levels in rivers, with spatial location x
and nitrogen concentration f(x)

Figure taken from [Liu et al, Ecol. Indic., 2012]

Surrogate models:

The function f linking input x to output y is known, but
computationally very expensive to evaluate.

Since f(xn) is obtained from running computer code, it is noise-free.

e.g. parametric partial differential equations

−∇z · (a(z,x)∇zu(z,x)) = g(z), z ∈ D̃, (+ bound. cond.),

f(x) = F(u(·,x)), e.g. f(x) = ‖u(·,x)‖L2(D̃).

Figure taken from [Aarnes et al, Adv. Water Resour., 2005]
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Kernel methods
Interpolation set-up, see e.g. [Wendland ’05]

For now, I will focus on noise-free data y = {xn, f(xn)}Nn=1 and
interpolation. I will later discuss the extension to noisy data and regression.

To approximate f : D → R from y using kernel interpolation:

we choose a kernel k : D ×D → R, and

we compute, with XN := {xn}Nn=1,

f(x) ≈ sfXN ,k(x) =
N∑
n=1

αnk(x,xn).

The coefficients α = [α1, . . . , αN ]T ∈ RN are determined by the
interpolating conditions

f(xn) = sfXN ,k(x
n), n = 1, . . . , N.

A unique α exists provided k is symmetric positive-definite and the

interpolation points {xn}Nn=1 are distinct.
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Kernel methods
Interpolation set-up (ctd.), see e.g. [Wendland ’05]

Writing the interpolating conditions in vector form, we have

f(XN ) :=


f(x1)
f(x2)

...
f(xN )

 =


∑N

n=1 αnk(x1,xn)∑N
n=1 αnk(x2,xn)

...∑N
n=1 αnk(xN ,xn)


= K(XN , XN )α,

where K(XN , XN ) ∈ RN×N is the matrix with entries
kij = k(xi,xj).

K is symmetric positive-definite provided k is symmetric
positive-definite and the interpolation points {xn}Nn=1 are distinct.
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Kernel methods
Choice of kernel function, see e.g. [Rasmussen, Williams ’06]

The choice of kernel k is very important in
practice, especially in the small N regime.

⇒ Behaviour in-between interpolation points!

A wide variety of kernels exists, aimed at being flexible or specialised
to capture specific behaviours.

Kernels can incorporate information about regularity, stationarity,
isotropy, periodicity, amplitudes, multiple scales, . . .
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Kernel methods
Matérn kernel functions, see e.g. [Porcu, Bevilacqua, Schaback, Oates ’24]

Kernels often used in applications include the Matérn kernels:

kν,λ(x,x′) =
σ2

Γ(ν)2ν−1

(
‖x− x′‖2

λ

)ν
Bν

(
‖x− x′‖2

λ

)
,

with regularity parameter ν > 0, lengthscale λ > 0, scaling σ2 > 0

Special cases: ν = 1
2
⇒ σ2 exp(− ‖x−x′‖2

λ
) and ν →∞⇒ σ2 exp(− ‖x−x′‖22

2λ2 )

The kernel function kν,λ(x,xn) decays with distance r = ‖x− xn‖2.
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Kernel methods
Matérn kernel functions (ctd.)

The choice of ν and λ
strongly influences the
shape of sfXN ,k.

But sfXN ,k does not

depend on σ2, since it
only scales the kernel k
and the coefficients α.

The choice of k should reflect properties of f .
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Gaussian process regression
Motivation

A drawback of kernel interpolation is that it only provides an
approximation sfXN ,k ≈ f , and it does not provide a computable error
estimate.

f (x ) kXN (x,x )

m f
XN

(x )

f (x )

s fXN ,k(x )

Embedding the method into a Bayesian framework allows for
uncertainty quantification and hence (a form of) error estimation.
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Gaussian process regression
Bayesian framework, see e.g. [Rasmussen, Williams ’06]

In a Bayesian statistical framework, we place a prior distribution on
the function f we want to recover.

I This is a probability measure on a space of functions, e.g. on the space
of continuous functions C0(D).

I The prior distribution incorporates any properties of f we know, e.g.
typical lengthscales, smoothness, periodicity, . . . .

We obtain a posterior distribution on f (or f |y) by conditioning the
prior distribution on the observations y = {xn, f(xn)}Nn=1.

I The posterior distribution is more informative than the prior
distribution, i.e. more concentrated.

I The posterior distribution may or may not be available in closed form.
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Gaussian process regression
Set-up, see e.g. [Rasmussen, Williams ’06]

Gaussian process regression is an instance of the Bayesian framework.

We put a Gaussian process prior GP(0, k) on f , where we choose
zero mean for ease of presentation.
For {xi}mi=1 ⊆ D, the random variables {f(xi)}mi=1 follow a joint Gaussian

distribution with E[f(xi)] = 0 and Cov[f(xi), f(xj)] = k(xi,xj).

Sample paths Mean and standard deviation
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Gaussian process regression
Set-up (ctd.), see e.g. [Rasmussen, Williams ’06]

The Gaussian process posterior GP(mf
XN

, kXN ) on f |y is obtained by

conditioning the prior on the observed data y = {xn, f(xn)}Nn=1:

mf
XN

(x) = k(x, XN )>K(XN , XN )−1f(XN ),

kXN
(x,x′) = k(x,x′)− k(x, XN )>K(XN , XN )−1k(x′, XN ),

where k(x, XN ) = [k(x,x1), . . . , k(x,xN )]> ∈ RN , K(XN , XN ) ∈ RN×N

has ijth entry k(xi,xj), and f(XN ) = [f(x1), . . . , f(xN )]> ∈ RN .

Sample paths Mean and standard deviation
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Gaussian process regression
Derivation of posterior, see e.g. [Rasmussen, Williams ’06]

The form of the posterior distribution follows from the conditioning
formula for Gaussian random variables.

Proposition

Suppose the n-dimensional multivariate Gaussian vector Z is partitioned as

Z =

[
Z1

Z2

]
,

with Z1 taking values in Rn1 and Z2 taking values in Rn2 . Writing

Z ∼ N(µ,Σ) = N

([
µ1

µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
,

the conditioned random variable Z1|z2 is multivariate Gaussian with

Z1|z2 ∼ N(µ1|2,Σ1|2)),

µ1|2 = µ1 + Σ12Σ
−1
22 (z2 − µ2), Σ1|2 = Σ11 − Σ12Σ

−1
22 Σ21.
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Gaussian process regression
Derivation of posterior, see e.g. [Rasmussen, Williams ’06]

Under the Gaussian process prior, we have by definition

[
f(XN )
f(x)

]
:=


f(x1)

...
f(xN )
f(x)

 ∼ N
([

0
0

]
,

[
K(XN , XN ) k(x, XN )>

k(x, XN ) k(x,x)

])
.

Applying the conditioning formula from the previous slide gives the
Gaussianity, and the desired formulas for the mean and variance, of
f(x)|f(XN ):

mf
XN

(x) = k(x, XN )>K(XN , XN )−1f(XN ),

kXN
(x,x′) = k(x,x′)− k(x, XN )>K(XN , XN )−1k(x′, XN ).

Note that since K(XN , XN ) is symmetric positive-definite, we have
kXN (x,x) ≤ k(x,x), i.e. the posterior marginal variance is less than
or equal to the prior marginal variance.
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Gaussian process regression
Choice of prior distribution

The prior GP(0, k) should be chosen to reflect properties of f .
Assume we choose a Matérn covariance kernel.

The covariance kernel k determines
properties of the Gaussian process

and its sample paths:

smoothness ν (sample path
differentiability),

amplitude σ2 (marginal
variance),

length scales of fluctuations λ
(correlation length),

Challenge: hyper-parameters θ are usually unknown a-priori!
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Gaussian process regression
Uncertainty quantification, see e.g. [Stuart, T. ’18]

The posterior mean mf
XN

is equal to the kernel interpolant,

mf
XN

(x) = sfXN ,k(x),

and hence provides an approximation to f .

The posterior variance kXN (x,x) provides uncertainty quantification:
how certain am I in the prediction of f(x)?

The posterior standard deviation is in fact the worst case error in the
reproducing kernel Hilbert space1 (RKHS) Hk of k:√

kXN (x,x) = sup
g∈Hk(D)
‖g‖Hk(D)=1

|sgXN ,k(x)− g(x)|.

1A Hilbert space where point evaluation g(x) is a bounded linear functional and
k(·,x) is the Riesz representer.

A. Teckentrup (Edinburgh) Introduction to GPs 27 August 2025 17 / 30



Gaussian process regression
Uncertainty quantification, see e.g. [Stuart, T. ’18]

The posterior mean mf
XN

is equal to the kernel interpolant,

mf
XN

(x) = sfXN ,k(x),

and hence provides an approximation to f .

The posterior variance kXN (x,x) provides uncertainty quantification:
how certain am I in the prediction of f(x)?

The posterior standard deviation is in fact the worst case error in the
reproducing kernel Hilbert space1 (RKHS) Hk of k:√

kXN (x,x) = sup
g∈Hk(D)
‖g‖Hk(D)=1

|sgXN ,k(x)− g(x)|.

1A Hilbert space where point evaluation g(x) is a bounded linear functional and
k(·,x) is the Riesz representer.

A. Teckentrup (Edinburgh) Introduction to GPs 27 August 2025 17 / 30



Gaussian process regression
Uncertainty quantification, see e.g. [Stuart, T. ’18]

The posterior mean mf
XN

is equal to the kernel interpolant,

mf
XN

(x) = sfXN ,k(x),

and hence provides an approximation to f .

The posterior variance kXN (x,x) provides uncertainty quantification:
how certain am I in the prediction of f(x)?

The posterior standard deviation is in fact the worst case error in the
reproducing kernel Hilbert space1 (RKHS) Hk of k:√

kXN (x,x) = sup
g∈Hk(D)
‖g‖Hk(D)=1

|sgXN ,k(x)− g(x)|.

1A Hilbert space where point evaluation g(x) is a bounded linear functional and
k(·,x) is the Riesz representer.

A. Teckentrup (Edinburgh) Introduction to GPs 27 August 2025 17 / 30



Gaussian process regression
Uncertainty quantification (ctd.), see e.g. [Stuart, T. ’18]

The posterior standard deviation
√
kXN (x,x) can hence be used to

model the error in the approximation of f :

|sfXN ,k(x)− f(x)|
?
≈ sup

g∈Hk(D)
‖g‖Hk(D)=1

|sgXn,k(x)− g(x)|.

Including
√
kXN (x,x) as an error estimate in computational pipelines

can avoid over-confident and biased predictions, see e.g.
[Bai, T., Zygalakis ’24] for a case study in surrogate models in
Bayesian inverse problems.

Note that
√
kXN (x,x) is given as part of the methodology and can

be computed explicitly.
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Gaussian process regression
Extension to noisy data

Suppose we have noisy observations y = {xn, f(xn) + εn}Nn=1, with
εn ∼ N(0, δ2) i.i.d..

Under the Gaussian process prior, we have by definition
f(x1) + ε1

...
f(xN ) + εN

f(x)

 ∼ N
([

0
0

]
,

[
K(XN , XN ) + δ2I k(x, XN )>

k(x, XN ) k(x,x)

])
.

Applying the conditioning formula for Gaussian random variables gives
the Gaussianity, and the desired formulas for the mean and variance,
of f(x)|y:

mf
XN

(x) = k(x, XN )>(K(XN , XN ) + δ2I)−1y,

kXN
(x,x′) = k(x,x′)− k(x, XN )>(K(XN , XN ) + δ2I)−1k(x′, XN ).
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Gaussian process regression
Advantages and challenges

Kernel methods offer many advantages, including:

Flexibility and adaptation through the choice of kernel k.

Ability to handle scattered interpolation points XN in arbitrary
dimension d, opening the possibility of experimental design.

Providing an error estimate through the Gaussian process framework.

Open challenges remain, including:

Computational bottlenecks: solving linear systems with dense,
typically ill-conditioned matrix K(XN , XN ).

Kernel design: incorporating known structure into kernel k, and
analysing the benefits.

In this course, we will focus on methodology in physics-constrained and
non-stationary settings.
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Convergence analysis
Relation to Kernel Interpolation [T., ’20], [Wendland ’04]

To prove convergence as N →∞, we can make use of results from
numerical analysis. Recall: Want mf

XN
→ f and kXN → 0.

The posterior mean mf
XN

is a linear combination of kernel functions:

mf
XN

(x) =
N∑
n=1

αnk(x,xn), for known α ∈ RN .

We have mf
XN

(xn) = f(xn), for n = 1, . . . , N .

The predictive mean mf
XN

is a kernel interpolant of f , and in the
special case of isotropic kernels k(x,x′) = k(‖x− x′‖2), a radial basis
function interpolant.

Convergence properties will depend on the specific choice of k.
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Convergence analysis
Convergence for k = kMat - well-specified setting

Theorem [Arcangéli, de Silanes, Torres ’12]

Let D be a Lipschitz domain that satisfies an interior cone condition. Then
for any f ∈ Hν+d/2(D) and hXN ,D ≤ h0 sufficiently small, we have

‖f −mf
XN

(θ)‖L2(D) ≤ C h
ν+ d

2
XN ,D︸ ︷︷ ︸

decreasing in N
→convergence

‖f‖Hν+d/2(D).

Furthermore, ‖kXN (θ)
1
2 ‖L2(D) ≤ C ′hνXN ,D.

The Sobolev space Hν+d/2(D) is the reproducing kernel Hilbert space
(RKHS) of kMat.

With design points XN = {xn}Nn=1, define the fill distance

hXN ,D = sup
x∈D

min
xn∈XN

‖x− xn‖2.
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Convergence analysis
Convergence for k = kMat - well-specified setting (ctd.)

hXN ,D := sup
x∈D

inf
xn∈XN

‖x− xn‖2

∼ N−
1
d hXN ,D

D
XN

To ensure hXN ,D → 0 as N →∞, we need a space-filling design.

To obtain a fill distance hXN ,D = ε, the number of interpolation
points N needs to grow with ε−d.

To handle high-dimensional problems, we need to assume structure in
f and incorporate this structure into k and XN .
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Stationary Gaussian process regression
Convergence for k = kMat - misspecified setting

Theorem [Narcowich, Ward, Wendland ’06] + previous theorem

Let D be a Lipschitz domain that satisfies an interior cone condition. Then
for any f ∈ Hτ (D), with d

2 < τ < ν + d
2 , and hXN ,D ≤ h0 sufficiently

small, we have

‖f −mf
XN

(θ)‖L2(D) ≤ C hτXN ,D︸ ︷︷ ︸
decreasing in N
→convergence

ρ
ν+ d

2
−τ

XN︸ ︷︷ ︸
non-decreasing in N

→stability

‖f‖Hτ (D).

Furthermore, ‖kXN (θ)
1
2 ‖L2(D) ≤ C ′h

τ− d
2

XN ,D
ρ
ν+ d

2
−τ

XN ,D
.

With design points XN = {xn}Nn=1, define the mesh ratio

ρXN ,D =
supx∈D minxn∈XN ‖x− xn‖2

minn6=m ‖xn − xm‖2
ρXN ,D ≥ 1

ρXN ,D = constant: quasi-uniform.
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Convergence analysis
Empirical Bayes’

In a hierarchical Bayesian approach, we obtain the posterior f |y as a
marginal distribution of the joint posterior f, θ|y. This is often
intractable.

We use an empirical Bayes’ (or plug-in) approach, where we estimate
values of any hyper-parameters θ from y = {xn, f(xn)}Nn=1 and plug

the estimate θ̂N into the prior distribution.

The sequence of estimates θ̂N can be found via maximum likelihood
estimation, maximum a-posteriori estimation, cross validation, . . .

Under what conditions do we get convergence for the Gaussian
process posterior GP(mf

XN
(θ̂N ), kXN (θ̂N ))?
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Convergence analysis
Convergence for k = kMat - estimated hyperparameters

Theorem [T. ’20]

Let D be a Lipschitz domain that satisfies an interior cone condition, and for
N∗ ∈ N define the quantities ν− := infN≥N∗ ν̂N and ν+ := supN≥N∗ ν̂N .

Then for any f ∈ Hν†+d/2(D), hXN ,D ≤ h0 sufficiently small and N ≥ N∗,
we have

‖f −mf
XN

(θ̂N )‖L2(D) ≤ C h
min{ν†,ν−}+ d

2
XN ,D︸ ︷︷ ︸
decreasing in N
→convergence

ρ
max{ν+−ν†,0}
XN ,D︸ ︷︷ ︸

non-decreasing in N
→stability

‖f‖
Hν†+d/2(D)

.

Furthermore, ‖kXN (θ̂N )
1
2 ‖L2(D) ≤ C ′h

min{ν†,ν−}
XN ,D

ρ
max{ν+−ν†,0}
XN ,D

.

C,C ′ independent of N requires 0 < σ̂2N , λ̂N , ν̂N <∞ uniformly, but
we can also explicitly track dependence.

We don’t need identifiability or convergence of parameter estimates.

Optimal rates N−
ν+d/2
d are obtained with ν− = ν+ = ν, and with

ν− ≥ ν if the points XN are quasi-uniform.
The Sobolev space Hν+d/2(D) appears as the reproducing kernel
Hilbert space (RKHS) of kMat.
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Convergence analysis
Separable Matérn kernels

Suppose we use the family of separable Matèrn covariances

ksepMat(x,x
′) =

d∏
i=1

kMat(xi, x
′
i), D =

d∏
j=1

Dj .

Suppose XN is a Smolyak sparse grid built on nested points.
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Convergence analysis
Convergence for k = ksepMat - estimated hyperparameters

Theorem [T. ’20]

With covariance kernel ksepMat and sparse grid design points, under the
same conditions as previous theorem, we have with α = α(ν†, ν+, ν−)
independent of d,

‖f −mf
XN

(θ̂N )‖L2(D) ≤ C N−α (logN)(1+α
′)(d−1)‖f‖⊗dj=1H

ν†+d/2(Dj)
.

Furthermore, ‖kXN (θ̂N )
1
2 ‖L2(D) ≤ C ′N−α

′′
(logN)(1+α

′′′)(d−1).

Requires dominating mixed smoothness of f . H1(D) needs
∂f
∂x1

, ∂f∂x2 , . . . , but ⊗dj=1H
1(Dj) needs ∂f

∂x1
, ∂f∂x2 ,

∂2f
∂x1∂x2

, . . . , ∂df
∂x1...∂xd

When νj = ν and the sparse grid is based on uniform points, we have
α = 1

2 + min{ν†, ν−} and α′ = min{ν†, ν−}, which are the rates
obtained for d = 1 in previous theorem.
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