

Signal Processing in the Microwave SQUID Multiplexer-based Readout Systems for Magnetic Microbolometer Detector Arrays

Eng. Juan Manuel Salum

E modes

- The Universe expanded exponentially, leading to its cooling \rightarrow
- Photons enabled to freely propagate after recombination epoch \rightarrow
- The footprint of this process is in the CMB polarization \rightarrow
- CMB is E- and B-mode polarized →
- Detecting B modes provides direct evidence of the inflationary period →

B modes

Challenges for B modes detection

The CMB and foregrounds spectrum

Effort by the scientific community to detect the B-modes \rightarrow

- \rightarrow Measurement challenges:
 - B-mode is a weak signal
 - Foregrounds
 - Systematic effects

- Low-temperature bolometer arrays
- Additional bands for foregrounds removal

Calibration

Bolometric Interferometry

Credits: Planck collaboration

Q&U Bolometric Interferometer for Cosmology

The QUBIC telescope

QUBIC is the first bolometric interferometer for CMB 2048 bolometers for the 150GHz and 220GHz bands The system is housed in a cryostat QUBIC challenges:

- Designing the dichroic for simultaneous 150GHz and 220GHz operation
- Readout system scalability

A proposal for QUBIC next generation

- → Multichroic antenna-coupled Magnetic Microbolometer (MMB)
 - Multiple observation bands in a single pixel avoid the use of the dichroic
 - <u>Novel detector</u> based on the Magnetic Microcalorimeter (MMC)
- → A microwave SQUID multiplexer readout system
 - Promising technology for <u>high-sensitivity</u> readout
 - High-multiplexing factor
- → Room temperature electronics
 - A system based on a software-defined radio scheme is proposed due to its <u>adaptability</u> to different experiments requirements
 - FPGA-based system enables high <u>scalability and flexibility</u>

A proposal for QUBIC next generation

- → Multichroic antenna-coupled Magnetic Microbolometer (MMB)
 - Multiple observation bands in a single pixel avoid the use of the dichroic
 - <u>Novel detector</u> based on the Magnetic Microcalorimeter (MMC)
- → A microwave SQUID multiplexer readout system
 - Promising technology for <u>high-sensitivity</u> readout
 - High-multiplexing factor
- → Room temperature electronics
 - A system based on a software-defined radio scheme is proposed due to its <u>adaptability</u> to different experiments requirements
 - FPGA-based system enables high <u>scalability and flexibility</u>

Novel detector: Magnetic Microbolometer (MMB)

- → Photons absorption increase the absorber temperature
- → Au:Er paramagnetic sensor embedded in a magnetic field changes its magnetization with the temperature
- → The magnetic flux passing through the sensor changes, generating a measurable signal

MMB readout

Magnetic flux is read out with a radio frequency Superconducting Quantum Interference Device The supercurrent in the RF-SQUID follows

$$I_{\rm s} = -I_{\rm c} \sin \left(\frac{2\pi \Phi_{\rm ext}}{\Phi_0} + \frac{2\pi L_{\rm s} I_{\rm s}}{\Phi_0} \right)$$

Detector Signal

RF-SQUID readout

RF-SQUID readout

- \rightarrow RF-SQUID coupled to a resonator
- This forms a variable inductance with the SQUID signal \rightarrow
- \rightarrow Detector signal shifts the resonator response (s_{21})
- A readout tone monitors the resonator state →

The Microwave SQUID Multiplexer (µMUX)

The Microwave SQUID Multiplexer (µMUX)

The µMUX: Fluxramp modulation

- → Digital fluxramp and multi-tonal readout signals generation
- → Conversion of readout and flux ramp signals to the analog domain
- → Readout and fluxramp signals conditioning
- → Readout signal acquisition and processing
 - Channelizer: readout tones separation and rf-SQUID recovery
 - Fluxramp demodulator: extract detector signals

- → Digital fluxramp and multi-tonal readout signals generation
- → Conversion of readout and flux ramp signals to the analog domain
- → Readout and fluxramp signals conditioning
- → Readout signal acquisition and processing
 - Channelizer: readout tones separation and rf-SQUID recovery
 - Fluxramp demodulator: extract detector signals

- → Digital fluxramp and multi-tonal readout signals generation
- → Conversion of readout and flux ramp signals to the analog domain
- → Readout and fluxramp signals conditioning
- → Readout signal acquisition and processing
 - Channelizer: readout tones separation and rf-SQUID recovery
 - Fluxramp demodulator: extract detector signals

- → Digital fluxramp and multi-tonal readout signals generation
- → Conversion of readout and flux ramp signals to the analog domain
- → Readout and fluxramp signals conditioning
- → Readout signal acquisition and processing
 - Channelizer: readout tones separation and rf-SQUID recovery
 - Fluxramp demodulator: extract detector signals

- → Digital fluxramp and multi-tonal readout signals generation
- → Conversion of readout and flux ramp signals to the analog domain
- → Readout and fluxramp signals conditioning
- → Readout signal acquisition and processing
 - Channelizer: readout tones separation and rf-SQUID recovery
 - Fluxramp demodulator: extract detector signals

This work objectives

- → Generation sub-system
 - Fluxramp signal chain design
 - Integrate the signal generation sub-system
- → Processing sub-system
 - Multi-channel demodulator
 - Acquisition chain integration
- → Readout System Validation

Fluxramp signal noise requirement

- → Background noise > Detector noise > Readout noise
- → Background Limited Photometry (BLIP) condition achieved from 0.045 Hz to 760 Hz

Fluxramp frontend and cryogenic setup

→ Modulation Signal Synthesizer (MSS) around the 16 bits DAC MAX5891

MSS board: Noise analysis

Source	Flux Noise Spectral Density [$\mu \phi_0^{/\sqrt{Hz}}$]
DAC quantized noise	0.015
Current to voltage circuit	0.005
Cryogenic attenuator	0.001
100 Ω load	0.004
Total MSS Noise	0.016
Expected MMB Noise	0.6

Expected MMB signal degraded by 0.034%

MSS characterization

- → Clock generated by the EVAL-AD9523-1 board
- → Signal acquisition using Red Pitaya
- → 200 Hz to 100 kHz signal generation
- → Total Harmonic Distortion (THD) and Spurious Free Dynamic Range (SFDR) characterization
- → THD < 0.02 % and SFDR=80 dBc consistent with the manufacturer's specifications

Baseline MSS noise < Expected MMB noise

Fluxramp demodulator

- → Correlation method with a complex exponential at the RF-SQUID frequency
- → A low-pass filter removes the high-frequency components of mixing
- → Arctangent function returns the input signal phase
- → Time-division Multiplexing (TDM) enables multiple input signals demodulation
- → Filter and TDM implemented as a moving average filter in an M-position accumulator

System nonlinearity

- \rightarrow Many groups reported non-linearities in the readout system
 - Detector signal simulated as a linear signal
- \rightarrow Residuals observed after the demodulator output
- Conclusion: the demodulator produces undesired \rightarrow components that aliases to the detector band

Salum et al., 2023, 10.1007/s10909-023-02993-z 18

Weighted filter implementation

- → Adding a window function improves the attenuation
- → An improvement of more than 35dB achieved with the Bartlett window

Salum et al., 2023, 10.1007/s10909-023-02993-z 19

System scalability challenge

- → State-of-the-art systems face scalability problems
- → Higher readout power increases spurs power due to RF devices nonlinearities
- → Proposed: Spectral engineering for multi-channel dynamic performance optimization

Spectral Engineering

Salum et al., 2024, 10.1007/s10909-024-03049-6 21

- Resonance frequencies
 - Bandwidths
 - Transmission depths

System integration

- → Fluxramp demodulator integrated with a 4-channel Channelizer.
- → Complete readout assembly
- → A 238 Hz, 125 m ϕ_0 MMB signal was emulated (added to the modulation signal in the BRAM)

Summary

- ✓ The readout system was successfully integrated and validated
- ✓ The fluxramp system meets the noise requirements for Magnetic Microbolometer detectors readout
- ✓ The source of the system's nonlinearity was explained and a solution was proposed
- The proposed Spectral Engineering technique, successfully overcomes the noise vs. spur trade-off, achieving improvements of up to 50 dB

This work established a foundation for future Magnetic Microbolometer readout

Back-up

QUBIC current readout

 V_{bias}

≷

I_{bias} •

Multichroic antenna-coupled Magnetic Microbolometer

Josephson Junction

Readout system

Background noise

MMB noise

MSS digital backend

 \rightarrow

 \rightarrow

- Playback continuous signal
 Deal time configuration using AVI
- Real-time configuration using AXI-Lite protocol
- → Synthesizable signal frequencies

 $\frac{f_{\text{clk}}}{L_{\text{brown}}} \ge f_{\text{out}} > \frac{f_{\text{clk}}}{2}$

Differential Signaling Output Buffer

ZCU102

OB

MSS characterization using oscilloscope DPO 7104

Red Pitaya baseline

Down-conversion implementation

Down-conversion

- → DSP slice for efficient multiplication
- → Complex signal generated by a DDS
- → A phase value is generated as the index for a memory preloaded with sine and cosine samples
- → The phase value is generated by cyclically adding the Phase Register value to the Phase Accumulator
- → θ_0 sets the initial phase
- → One phase register for each input signal to be multiplexed in time

Multiplication implementation

- → Intellectual Property Core DSP48E2
- → Specialized block for efficient multiplication and accumulation (MAC operations)

Arctan implementation

4 CORDIC algorithm

- → Hardware efficient: requires only additions, subtractions and binary shifts
- → A starting vector (x_0 , 0) is iteratively rotated to the angle corresponding to arctan(y_N/x_N)
- → The accumulated sum of the rotated angles provides the final result for the arctangent
- → Adjustable precision: number of iterations determines the precision of the result

Aliasing effect mitigation in a measurement

$$\phi'[m] = \phi[m] + c + \sum_{l=1}^{\infty} (-1)^l \frac{b^l}{l} \frac{\partial^l \phi'[m]}{\partial b^l}\Big|_{(b=0)}$$
$$= \phi[m] + c + \sum_{l=1}^{\infty} (-1)^l \frac{b^l}{l} \cdot \sin((2\Omega_{det}m + c - d)l)$$

Fluxramp demodulator with phase delay

$$\Phi_{\rm det}(t) + \Phi_0(t) = \arctan\left(-\frac{\int_{T_{\rm ramp}} \theta(t+t_0)\,\sin(\omega_{mod}t)dt}{\int_{T_{\rm ramp}} \theta(t+t_0)\,\cos(\omega_{mod}t)dt}\right)\frac{\Phi_0}{2\pi}$$

Fluxramp demodulator implementation

Digital backend

Frequency planning of the digital processing chain

Readout signal processing system

System resources for 2048 detectors

		Resources																	
	Module	Description	N channels	Logic LUT	Mem LUT	FF Regs	FF latch	CARRY8	F7 MUX	F8 MUX	F9 MUX	BRAM B36/FIFO	BRAM B18	DSPs	I/O	CLK BUFFs	PLL	MMCM	GTH
Generation	stimulation	Fluxramp signal	1	0,19	0,00	0,11	0,00	0,01	0,00	0,00	0,00	3,51	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	bit_to_lvds	Fluxramp conditioning	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	9,76	0,00	0,00	0,00	0,00
	stimulation	Readout signal	-	0,23	0,00	0,13	0,00	0,01	0,00	0,00	0,00	14,04	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	jesd204phy	Readout signal tx/rx interface	-	1,06	0,00	0,70	0,00	0,43	0,01	0,01	0,00	0,00	0,00	0,00	0,00	1,98	0,00	0,00	16,67
	jesd204tx	Readout signal tx interface	-	0,72	0,03	0,31	0,00	0,01	0,01	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	sample mapper dac	and the second	-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		Subtotal		2,20	0,03	1,25	0,00	0,46	0,02	0,02	0,00	17,55	0,00	0,00	9,76	1,98	0,00	0,00	16,67
	jesd204rx	Readout signal rx interface	-	1,25	0,47	0,63	0,00	0,24	0,02	0,02	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	sample mapper adc		-	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	sample mapper adc		-	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0,00	0,00	0,00	0,00	0,00	0.00	0,00	0,00	0,00
	sample splitter	DDC input	32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0,00	0,00	0,00	0.00	0.00	0,00	0,00
	axi ddc controller	DDC Controler	32	0.03	0.00	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	ga ddc	DDC0	8	0.50	0.54	0.56	0.00	0.42	0.00	0.00	0.00	0.22	0.00	0.75	0.00	0.00	0.00	0.00	0.00
	ga ddc	DDC1	8	0.50	0.54	0.56	0.00	0.42	0.00	0.00	0.00	0.22	0.00	0.75	0.00	0.00	0.00	0.00	0.00
	da ddc	DDC2	8	0.50	0.54	0.56	0.00	0.42	0.00	0.00	0.00	0.22	0.00	0.75	0.00	0.00	0.00	0.00	0.00
	da ddc	DDC3	8	0.50	0.54	0.56	0.00	0.42	0.00	0.00	0.00	0.22	0.00	0.75	0,00	0.00	0.00	0,00	0,00
	sample combiner	DDC combiner	32	0.02	0,00	0.02	0,00	0.00	0.00	0.00	0,00	0.00	0,00	0.00	0,00	0,00	0,00	0,00	0,00
Processing	multiplier array	GA window multiplier	1	0.02	0,00	0.02	0,00	0.04	0,00	0,00	0,00	0,00	0,00	0.08	0,00	0,00	0,00	0,00	0,00
	win store	GA window	4	0,02	0,01	0,03	0,00	0,04	0,00	0,00	0,00	0.44	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	avi win function	GA WINDOW	4	0,01	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,44	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	dxi_wiii_iuiicuoii	CA controllor	4	0.02	0.00	0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	gaka_controller	GA controller	4	0,03	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	gaka	GA	4	0,10	0,07	0,11	0,00	0,05	0,00	0,00	0,00	0,00	0,00	0,08	0,00	0,00	0,00	0,00	0,00
	mag_pnase_processor	GA mag and phase gen	32	1,67	0,10	0,87	0,00	1,58	0,00	0,00	0,00	0,00	0,00	0,63	0,00	0,00	0,00	0,00	0,00
	parallel_decimator	GA	4	0,07	0,00	0,05	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	parallel_decimator	GA	4	0,07	0,00	0,05	0,00	0,08	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	serializer	GA serializer	4	0,01	0,00	0,02	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
	fluxramp_demodulation	Fluxramp demodulator	32	1,59	0,02	0,86	0,01	1,42	0,00	0,00	0,00	0,77	0,05	0,08	0,00	0,00	0,00	0,00	0,00
		Subtotal		225,09	93,59	206,39	0,16	193,84	0,02	0,02	0	153,12	0,8	158,4	0	0	0	0	0
	olk wiz	Clock Wizzard Eluxramp		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.61	0.50	0.00	25.00	0.00
	utile de buf	Clock buffer		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,01	0.25	0,00	23,00	0,00
	clk wiz	Clock Wizzard 2E0 MHz		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,25	0,00	25.00	0,00
Clock Managers	CIK_WIZ	Clock Wizzard 250 WHZ		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,99	0,00	25,00	0,00
	uuis_as_bui	Clock buller		2.07	0.41	211	0	0.17	012	0	0	0.74	0.05	0.12	15.55	0,25	105	0	0
	DDR4			3,27	0,41	2,11	0	0,17	0,12	0	0	2,14	0,05	0,12	15,55	1,98	12,5	25	0
	XBAR	Cubtotal		0,14	0.41	0,03	0	0.17	0.12	0	0	2.74	0.05	012	16.16	0	125	75	0
		Subtotal		3,41	0,41	2,14	U	0,17	0,12	0	U	2,14	0,05	0,12	16,16	3,97	12,5	75	0
	dma controller			0.75	0.09	0.56	0.00	0.13	0.00	0.00	0.00	6.80	0.11	0.00	0.00	0.00	0.00	0.00	0.00
Data access	dma axis register			0.01	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	axis channel select			0.01	0,00	0.03	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00
	and_onamer_bered	Subtotal		0.77	0.09	0.61	0	0.13	0	0	0	6.8	0.11	0	0	0	0	0	0
	L											-1-				1			
Miscellaneuos	zynqmp	Microprocesador interface		0,14	0,00	0,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,50	0,00	0,00	0,00
	global_reset			0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		Subtotal		0,14	0	0,01	0	0	0	0	0	0	0	0	0	0,5	0	0	0

Total 2048 231,61 94,12 210,40 0,16 194,60 0,16 0,04 0,00 180,21 0,96 158,52 25,92 6,45 12,50 75,00 16,67

Spectral Engineering results

µMUX characterization

- → µMUX channel measurement using commercial VNA and no modulation signal
- → Obtained channel parameters:
 - Resonance frequencies
 - Bandwidths
 - Transmission depths

- → Adding a DC current to the modulation line
- → Swept over two SQUID periods
- → Resonator response as a function of the flux signal
- → Mmod calculated

Microwave SQUID Multiplexer

- → Cryostat to cooldown at sub-K temperatures
- → 16-ch Microwave SQUID Multiplexer located at 100mK
- → Readout signal attenuation to achieve -70dBm µMUX measurement
- → The readout signal is amplified on the return path for optimal acquisition
- → Differential fluxramp signal chain

Microwave SQUID Multiplexer parameters

	Ch. 5	Ch. 6	Ch. 7	Ch. 8
$ s_{21}^{\min} $ [dB]	-30.55	-29.84	-31.2	-29.9
$f_{\rm r,0} \; [{\rm GHz}]$	5.915534	5.941953	5.974811	6.005102
$f_{\rm r,min}$ [GHz]	5.915452	5.941858	5.974705	6.004965
$f_{\rm r,max}$ [GHz]	5.915596	5.942019	5.97488	6.005169
$\Delta f_{\mathrm{r}}^{\mathrm{pp}}$ [kHz]	143.72	160.26	174.42	204.2
$BW_{\rm res}$ [kHz]	175	216.46	220.8	267.36
η	0.82	0.74	0.79	0.764
Q_1	33795	27450	27059	22460

Optimal µMUX measurement conditions

Open-loop noise

