Vts results for ESPP March 20, 2025

Aaron Wiedl, Xunwu Zuo

Outline

Main messages:

- Vts analysis fully redone. Results improved by a lot.
- current analysis)

Structure of this presentation:

- Overview of analysis steps
- Results
- (In backup) summary of changes wrt previous version

Can consider as "finalized", except one issue in bkg MC affect certain categories (mitigated in

Analysis overview

xunwu.zuo@cern.ch

Samples and selection

Samples (detail in backup)

- Signal: all decay modes of $t\bar{t} \rightarrow WbWs$
- Backgrounds: $t\bar{t} \rightarrow WbWb$, Z, WW, ZZ, Higgs, WWZ

Event selection

- Require exactly 1 s-tagged jet and 1 b-tagged jet
- Further divide into **10 categories** based on **number of objects**: e, μ , hadronic τ , and tagged jets
 - dilep_2tau • dilep_0tau, dilep_1tau,
 - semilep_0tau_ud, semilep_0tau_cs,
 - semilep_1tau_ud, semilep_1tau_cs,
 - dihad_ud_only,
 dihad_udcs, dihad_cs_only,

4

e/μ selection • $p_{\ell} > 20 \, \text{GeV}$

 $lso_{R<0.5} > 0.25$

iet selection

- anti-kt R=0.5
- $E_I > 15 \, {\rm GeV}$
- $m_I < 50 \, {\rm GeV}$
- τ -score < 0.5
- flavor tag if score > 0.5

τ selection

- anti-kt R=0.5 jet
- $E_{I} > 15 \, {\rm GeV}$
- $m_I < 5 \, \text{GeV}$
- τ -score > 0.5

Issue in bkg MC

In bkg $t\bar{t} \rightarrow WbWb$ samples, only negatively charged τ^- are generated, processes involving positive τ^+ are not.

```
alias lep = e1:e2:e3
alias neut = n1:n2:n2
alias Lep = E1:E2:E3
                                       Example card
alias Neut = N1:N2:N3
me = 0
mmu = 0
mtau = 0
process proc = e1, E1 => (Lep, neut, b, lep, Neut, B)
                         {$restrictions = "3+4~W+ && 6+7~W- && 3+4+5~t && 6+7+8~tbar"}
```

Spotted 2 days ago, actions at the moment:

- Exact reason under investigation
 - Related to "mtau = 0" (taus are fine in signal samples, where mtau is kept nonzero)
- More samples being generated
- Event weight adjusted account for the missing processes

events with 0 tau	events with 1 tau	events with 2 taus
proper xsec	xsec * 2	no event in MC

Mask all categories involving taus from analysis

xunwu.zuo@cern.ch

With these fixes, results in following slides should be valid.

Event yields

• Table here just for completeness, more discussion in later slides

Category	$dilep_0tau$	$dilep_1tau$	$dilep_2tau$	$semilep_0tau_ud$	$semilep_0tau_cs$	$semilep_1tau_ud$	$semilep_1tau_cs$	$dihad_ud_only$	$dihad_udcs$	diha
sig modes										
dilep_0tau	109.535	5.879	0.078	0.570	0.003	0.018	0.000	0.000	0.000	
dilep_1tau	10.561	59.169	1.611	0.583	0.024	0.136	0.001	0.000	0.000	
$dilep_2tau$	0.234	3.699	7.954	0.020	0.002	0.112	0.004	0.000	0.000	
semilep_0tau_ud	0.000	0.097	0.003	247.336	1.269	6.613	0.028	2.289	0.045	
$semilep_0tau_cs$	0.000	0.043	0.000	32.103	78.878	0.825	1.960	0.250	0.674	
$semilep_1tau_ud$	0.000	0.010	0.016	16.048	0.084	57.744	0.315	1.840	0.420	
$semilep_1tau_cs$	0.000	0.003	0.009	2.017	5.023	7.349	18.715	0.205	0.767	
dihad_ud_only	0.000	0.000	0.000	0.001	0.000	0.107	0.000	150.641	4.266	
$dihad_udcs$	0.000	0.000	0.000	0.001	0.000	0.060	0.024	40.614	105.374	
$dihad_cs_only$	0.000	0.000	0.000	0.000	0.000	0.011	0.008	2.672	18.875]
bkg modes										
dilep	269.367	160.893	5.993	20.703	0.437	0.704	0.053	0.057	0.000	
$\operatorname{semilep}_{-}\operatorname{ud}$	0.953	15.479	7.031	1824.440	119.457	539.586	38.093	95.711	15.923	
$semilep_cs$	10.987	175.139	49.010	1041.961	544.038	319.480	172.539	27.745	35.177	
dihad	0.000	0.000	0.000	19.898	5.798	82.496	26.964	3875.943	3238.026	2
Z	7.423	0.770	3.341	9.535	1.560	21.652	2.758	244.427	66.382	
WW	7.610	155.869	27.059	133.884	5.919	104.007	24.522	542.301	372.057	
ZZ	29.291	20.201	14.216	11.943	2.189	14.825	3.353	57.722	42.370	
higgs	19.766	13.118	7.361	43.130	4.872	17.604	3.387	138.186	122.021	
WWZ	0.593	0.094	0.009	5.067	0.053	0.602	0.000	2.193	0.406	

- 0.000
- 0.000
- 0.000
- 0.000
- 0.003
- 0.002
- 0.030
- 0.005
- 0.458
- 10.944
- 0.0000.1640.601235.4440.8155.6370.5271.8020.004

Signal efficiency

- x axis: truth of decay
- y axis: reco selection category
- Each cell shows fraction per column (truth), reflecting acceptance and reconstruction efficiency

E.g. ϵ (2 leptons) = 75%, ϵ (2 jets) = 71%

 Last column is the fraction of diagonal yield wrt its row. I.e. the accuracy of reco categories.

Overall

- Tau efficiency lower than expected (to check)
- Good selection accuracy

xunwu.zuo@cern.ch

								Confusio	on matrix					
	unselected	783145.0 42.40%	823650 0 61.34%	155926.0 74.37%	2599703.0 50.33%	2146525.0 53.94%	3381.0 57.22%	1779081.0 68.84%	1413879.0 71.12%	2170.0 73.34%	1945937.0 54.02%	3092864.0 54.34%	1115424.0 57.35%	862 57.0
	dilep_Otau	997653.0 54.02%	94164.0 7.01%	1902.0 0.91%	30.0 0.00%	38.0 C.CO%			4.0 0.00%					
	dilep Jcau	56660.0 3.07%	398522.0 29.68%	15037.0 7.65%	6358.0 0.12%	3105.0 0.08%	3.0 0.05%	453.0 0.02%	232.0 0.01%	1.0 0.03%				
	dilep_2tau	776.0 0.04%	10874.0 0.81%	33323.0 15.89%	215.0 0.00%	114.0 C.CO%		1563.0 0.06%	779.0 0.04%		5.0 0.00%	3.0 0.00%	1.0 0.00%	
	semilep_otau_ud	7223.0 0.39%	7697.0 0.57%	274.0 0.10%	2103233.0 40.72%	376064.0 9.45%	451.0 7.63%	136559.0 5.20%	24189.0 1.22%	21.0 0.01%	257.0 0.01%	122.0 0.00%	22.0 0.00%	1. 0.0
	semilep_Otau_cs	1228.0 0.07%	5898.0 0.44%	233.0 0.11%	351049.0 6.80%	1379235.0 34.56%	1986.0 33.61%	22518.0 0.88%	59354.0 4.49%	133.0 4.49%	86.0 0.00%	302.0 0.01%	85.0 0.00%	1. 0.0
Der Ali	semilep_Itau_Ud	189.0 0.01%	1517.0 0.11%	1080.0 0.52%	58978.0 1.14%	10420.0 0.26%	8.0 0.14%	490646.0 18.99%	85611.0 4.31%	107.0 3.62%	15371.0 0.43%	7148.0 0.13%	1064.0 0.05%	9 0.0
	semilep_ltau_cs	37.0 0.00%	391.0 0.03%	868.0 0.41%	9821.0 0.19%	36733.0 0.92%	48.0 0.01%	84182.0 3.26%	322910.0 16.24%	471.0 15.92%	3195.0 0.09%	14908.0 0.26%	2806.0 0.14%	28 0.1
)	dihad_ud_only	1.0 0.00%	11.0 0.00%	4.0 0.00%	28254.0 0.55%	5599.0 0.14%	7.0 0.12%	31839.0 1.23%	7352.0 U.37%	4.0 0.14%	1305033.0 36.23%	494135.0 8.68%	51599.0 2.65%	70 4.7
	dihad_udcs	1.0 0.00%	10.0 0.00%	10.0 0.00%	6538.0 0.13%	17896.0 C.45%	21.0 0.36%	31946.0 1.24%	25255.0 127%	16.0 0.54%	303842.0 8.43%	1769080.0 31.08%	277860.0 14.29%	331 22.1
	dihad_cs_only		2.0 0.00%	5.0 0.00%	751.0 0.01%	3126.0 0.09%	4.0 0.07%	5301.0 0.21%	18478.0 0.93%	33.0 1.12%	28199.0 0.79%	312975.0 5.50%	495941.0 25.50%	227 15.1
	sum_col	1846914 54.02% 45.98%	1342736 29.68% 70.32%	209662 15.89% 84.11%	5164930 40.72% 59.28%	3979155 34.66% 65.34%	5909 0.00% 100.00%	2584198 18.99% 81.01%	1988043 16.24% 83.76%	2959 0.00% 100.00%	3602226 36.23% 63.77%	5691537 31.08% 68.92%	1944802 25.50% 74.50%	149 0.0 100.
		dileo otau	dilep Itau	Wilep 22.34	vilep otau u	a nilepotau	otau cha	mit Itally	d tep-1tau	trau ckr	withad ud only	dihad udes	inad 5 only	ithad .
				d	en e	en	lee c	en :	gen gen	ileP-	0		- (2.

Actual

DNN training

- 3 hidden layers (2^* #inputs -> 4^* #inputs -> 8)
- For tt processes (sig and bkg), independent events for training, testing, and statistical analysis
- For other bkgs, training and testing events are also used for analysis.
- DNN output used for signal fit

xunwu.zuo@cern.ch

example plots in semilep_0tau_cs category

complete results at https://etpwww.etp.kit.edu/~xzuo/Vts_plots/20250319_2249/

xunwu.zuo@cern.ch

Results

- Binned likelihood fit on DNN output with Asimov dataset
- Only take categories without taus. -> Not affected by bkg issue
- Consider 1% bkg norm uncertainty to be the nominal case
- 6.3% relative uncertainty on $\mathscr{B}(t \to Ws)$

Fit config	Free bkg	bkg $\pm 20\%$	bkg $\pm 5\%$	bkg $\pm 2\%$	bkg $\pm 1\%$
category					
$dilep_0tau$	14.5%	12.4%	12.0%	11.9%	11.8%
$semilep_0tau_ud$	13.2%	10.8%	10.2%	9.9%	9.7%
$semilep_0tau_cs$	30.3%	18.9%	18.3%	17.8%	17.7%
dihad_ud_only	25.4%	20.2%	19.8%	19.1%	18.6%
$dihad_udcs$	32.4%	26.0%	25.6%	24.7%	24.1%
$dihad_cs_only$	108%	83.1%	78.4%	76.5%	76.2%
combined	6.8%	6.6%	6.5%	6.4%	6.3%

xunwu.zuo@cern.ch

Results

- To get a sense of the precision in tau-related categories
- xsec effect from bkg issue properly mitigated, kinematic effects not necessarily
- Sizable gain from tau-categories

 But not a gar 	ner chang	er for physi	ics interpre	etation			Fit config	hko +			
Suggestion:	Suggestion: not include taus before new samples are ready										
Suggestion.	category										
							dilep_0tau	11.8			
Fit config	Free bkg	bkg $\pm 20\%$	bkg $\pm 5\%$	bkg $\pm 2\%$	bkg $\pm 1\%$		dilep_1tau	18.2			
category							$semilep_0tau_ud$	9.7%			
$dilep_0tau$	14.5%	12.4%	12.0%	11.9%	11.8%		$semilep_0tau_cs$	17.7			
$semilep_0tau_ud$	13.2%	10.8%	10.2%	9.9%	9.7%		$semilep_1tau_ud$	19.8			
$semilep_0tau_cs$	30.3%	18.9%	18.3%	17.8%	17.7%		semilep_ltau_cs	37.8			
dihad_ud_only	25.4%	20.2%	19.8%	19.1%	18.6%		dihad_ud_only	18.6			
$dihad_udcs$	32.4%	26.0%	25.6%	24.7%	24.1%		$dihad_udcs$	24.1			
$dihad_cs_only$	108%	83.1%	78.4%	76.5%	76.2%		dihad_cs_only	76.2			
combined	6.8%	6.6%	6.5%	6.4%	6.3%		combined	5.6°_{\circ}			
	I					F					

xunwu.zuo@cern.ch

Conclusions and Next steps

Measurement of $\mathscr{B}(t \to Ws)$ at 365 GeV

- Analysis fully revised
- Nominal combined precision of 6.3%, and additional gain from tau-categories

For ESPP

- Finish analysis note -> this week
- If new bkg samples in time, rerun and include tau-categories -> next week
- Other interesting comparisons?

After ESPP

- Rerun as a simultaneous measurement of $\mathscr{B}(t \to Ws)$ and $\mathscr{B}(t \to Wb)$
- More studies on jet clustering and tagging performance
- Publication

Backups

xunwu.zuo@cern.ch

Sample considered

Sig: SM t -> Ws decay

- wzp6_ee_SM_tt_tWsTWb_tlepTall_ecm365
- wzp6_ee_SM_tt_tWsTWb_tlightTall_ecm365
- wzp6_ee_SM_tt_tWsTWb_theavyTall_ecm365
- wzp6_ee_SM_tt_tWbTWs_tallTlep_ecm365
- wzp6_ee_SM_tt_tWbTWs_tallTlight_ecm365
- wzp6_ee_SM_tt_tWbTWs_tallTheavy_ecm365

Bkg: SM t -> Wb samples

- wzp6_ee_SM_tt_tlepTlep_noCKMmix_keepPolInfo_ecm365
- wzp6_ee_SM_tt_thadThad_noCKMmix_keepPolInfo_ecm365
- wzp6_ee_SM_tt_tlepThad_noCKMmix_keepPolInfo_ecm365
- wzp6_ee_SM_tt_thadTlep_noCKMmix_keepPolInfo_ecm365

xunwu.zuo@cern.ch

Bkg: other SM processes

- p8_ee_WW_ecm365
- Ζ
- p8_ee_Zbb_ecm365
- wzp6_ee_tautau_ecm365
 ZZ
- p8_ee_ZZ_ecm365

Higgs

- wzp6_ee_bbH_ecm365
- wzp6_ee_ccH_ecm365
- wzp6_ee_ssH_ecm365
- wzp6_ee_qqH_ecm365
- wzp6_ee_tautauH_ecm365
- wzp6_ee_mumuH_ecm365
- wzp6_ee_eeH_ecm365
- wzp6_ee_nunuH_ecm365
 WWZ
- wzp6_ee_WWZ_Zbb_ecm365

Breakdown of changes

xunwu.zuo@cern.ch

Summary of changes

- Different categorization strategy
 - consider τ final states
 - explicit categories for fully hadronic cases
 - "new" version of PNet (tagging performance seems better)
- Updated normalization for samples
 - Raw event count for tt samples (~20% higher normalization)
 - Total luminosity $(2.5 \rightarrow 3.0 \text{ ab-1})$
- **Better MVA discriminator**
 - DNN instead of BDT (big improvement in hadronic channels)

tt raw event count

In Whizard samples,

matching to resonance mass windows

process proc = e1, E1 => (Lep, neut, b, lep, Neut, B) {\$restrictions = "3+4~W+ && 6+7~W- && 3+4+5~t && 6+7+8~tbar"}

- understood)
- in the total raw MC events, which are used for event weight calculation.
- (effectively 17% larger event yield for tt, both sig and bkg)

tt processes are generated with all possible phasespace, and mediator are later defined by

In about 17% of tt events, not enough generator top or W are found. (Reason to be better

In previous analysis, events without 2 gen tops and 2 gen Ws are filtered out, but still counted

In current analysis, these events are kept out for both analysis and event weight calculation

Luminosity and normalization

For tt events

Normalized to total expected number = 2 million (previously 1.9 million)

For other backgrounds

Normalized with xsec from sample dict, to total lumi of 3.0 ab-1 (previously 2.5)

Event selection

Event categories

- dilep: exactly 2 leptons, 2 jets
- semilep_ud: exactly 1 leptons, 4 jets (sb+ud)
- semilep_cs: exactly 1 leptons, 4 jets (sb+cs)
- dihad: exactly 0 lepton, 6 jets

Some categories have one-to-one correspondence, can be compared

Old

- **dilep_0tau,** dilep_1tau, dilep_2tau
- semilep_0tau_ud, semilep_0tau_cs,
- semilep_1tau_ud, semilep_1tau_cs,
- dihad_ud_only, dihad_udcs, dihad_cs_only,

xunwu.zuo@cern.ch

- About 40% of dileptonic events involves hadronic τ decays
- About **22%** of **semileptonic** events involves hadronic τ decays

Event categories

Based on number of leptons (e/μ) , hadronic τ , and jets

Event yield

category	dil	ilep semilep_ud		semil	ep_cs	dihad		
process	new	old	new	old	new	old	new	C
sig dilep	120.1	101.2	1.17	1.20	0.03	0.09	0	na ann an Airdean Airdean Airdean Airdean Air
sig semi_ud	0	0	263.4	208.7	1.35	2.47	4.5	3
sig semi_cs	0	0	34.1	20.2	83.9	90.7	1.8	1
sig dihad	0	0	0	0	0	0	332	2
bkg dilep	269.4	536	20.7	220	0.437	44	0.06	0
bkg semi	11.9	2.94	2866.3	4205.1	663.5	1571.7	175	79
bkg dihad	0	0	19.9	9.45	5.80	3.53	7349	86
bkg WW+ZZ+ZH	56.6	609.2	188.9	504.7	12.9	158.1	1280	29
bkg Z + WWZ	8.0	-	14.6	-	1.61	-	314	

- Signal yields in ballpark agreement
- bkg yields in general became (much) lower

xunwu.zuo@cern.ch

Seems new PNet training has lower fake s-tag rate (to confirm)

Training performance

- Training performance not better than before
- New training is more reliable
 - More bkg events, with event weight properly applied
 - Tested for overtraining
 - Independent events for fits

AUR	dilep	semilep_ud	semilep_cs
this version	0.937	0.929	0.895
previous analysis	0.964	0.889	0.932

