
KIT – The Research University in the Helmholtz Association

Self-Hosting Research Data Infrastructure with Kadi4Mat: 

A Practical Use Case for Managing Physics Data at IBPT, KIT
Saeid Masoumi, J. Gethmann, W. Mexner, M. Schuh, R. Ruprecht, A.-S. Müller

✓ Self-hosted & Open Source 

❖ deployable on institutional infrastructure with Docker

✓ Flexible Metadata 

❖ supports multiple schemas, templates, and semantic dataset linking

✓ Data Lifecycle Tracking 

❖ from data creation to publication, with provenance & versioning

✓ Integration & Workflows

❖ Nice supporting tools (Kadi-APY, KadiFS, Kadistudio)

✓ Scalable & FAIR

❖ suited for large-scale datasets and compliant with FAIR principles

✓ Community-driven

❖ open development, extensible, and widely adopted

Why Kadi4mat

✓ Parameter space at KARA & FLUTE is too large → scans are impractical

✓ A metadata database (RDM system) is essential

✓ Enables combination of datasets, reuse of past experiments, and better planning

✓ Ensures efficient use of costly beam time

✓ Accelerates transition from setup to actual measurements

✓ Goal: Self-hosted, scalable, FAIR-compliant research data infrastructure for physics data

Motivation

➢ Test Environments: Virtual Machine & Dedicated Server

➢ Storage: Local Storage, S3 (Object Storage), LSDF

➢ Deployment Approaches: Monolithic Application, Dockerized Setup

➢ Upload Methods: WebUI, Kadi-apy (CLI)

➢ Mounting File Systems: CIFS, davfs, sshfs

➢ Data Chunk Sizes: 10 MB, 64 MB, 128 MB, 256 MB, 512 MB, 1 GB

Goal: speed up big data uploads & reduce number of requests

How Kadi tested

Two Kadi Instances

✓ Internal: Archiving research data 

✓ External: FAIR data publication (open access)

Access Control

✓ Internal instance: only inside institute

✓ External instance: accessible from internet

Authentication: KIT OpenID Federation

Data Handling

✓ Internal Kadi: read/write

✓ External Kadi: read-only

Database & Backup

✓ Shared database with daily backup

✓ Internal DB dump → restored on external instance

Our implementation

Our implementation of Kadi has proven to be stable, scalable, and user-

friendly, with positive test results confirming its readiness for broader 

deployment. Building on this foundation, the next steps include the expansion 

of the system to other accelerator facilities, introducing data immutability 

within the Kadi framework, and exploring the integration of large language 

models (LLMs) to enrich metadata management.

Feedback & future work

In our evaluations, we observed that using a virtual machine is the preferred

choice due to easier management, and performance (difference compared to a

dedicated server was negligible). For storage, the LSDF infrastructure proved most

suitable, as it is specifically designed for large-scale scientific data.

To increase security and maintain modularity, we opted for a Dockerized setup

instead of a monolithic application. For handling large datasets, the Kadi-apy CLI

tool turned out to be more efficient than the WebUI, offering significantly faster

uploads. Regarding storage protocols, CIFS was chosen as the most stable option

for mounting LSDF within the Kadi VM.

Furthermore, by testing different data chunk sizes, we identified 1 GB as the optimal

size for balancing upload speed and system stability. To ensure the fairness of our

experiments, memory caches were cleared before each upload.

Lessens learned

Contact: saeid.masoumi@kit.edu


	Slide 1

