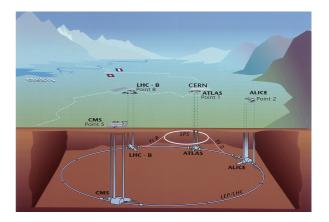


System and Integration Tests with 2S Module Prototypes for the Phase-2 Upgrade of the CMS Outer Tracker

Lea Stockmeier May 09, 2025

www.kit.edu

The Large Hadron Collider (LHC)



Particle accelerator

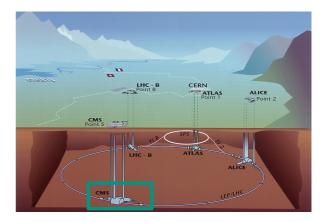
- Proton-proton collisions with bunch crossing rate of 40 MHz
- Center-of-mass-energy of 13.6 TeV
- Four experiments at four interaction points

High Luminosity LHC (HL-LHC) Upgrade

- Increase of instantaneous luminosity by a factor of 3.5
- Exploit full physics potential of LHC
- Begin of data taking in 2030

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
2/17 09.05.2025	Lea Stockmeier: System and Integ	gration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

The Large Hadron Collider (LHC)

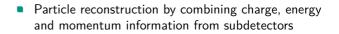


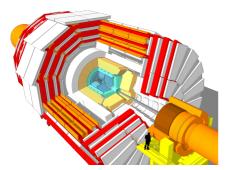
Particle accelerator

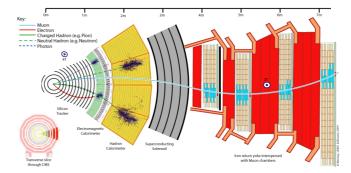
- Proton-proton collisions with bunch crossing rate of 40 MHz
- Center-of-mass-energy of 13.6 TeV
- Four experiments at four interaction points

High Luminosity LHC (HL-LHC) Upgrade

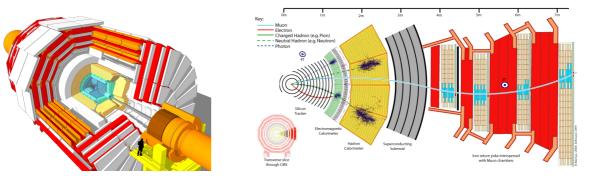
- Increase of instantaneous luminosity by a factor of 3.5
- Exploit full physics potential of LHC
- Begin of data taking in 2030




HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
2/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics


The Compact Muon Solenoid (CMS) Experiment

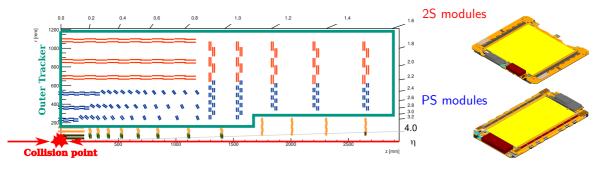
- Multi-purpose particle detector
- Triggered data readout


HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
3/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

The Compact Muon Solenoid (CMS) Experiment

- Multi-purpose particle detector
- Triggered data readout

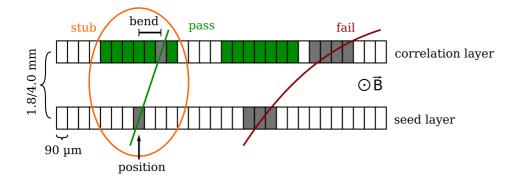
Particle reconstruction by combining charge, energy and momentum information from subdetectors


\rightarrow **Phase-2 Upgrade** of subdetectors for operation during HL-LHC

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
3/17 09.05.2025	Lea Stockmeier: System and Integr	ation Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

The Phase-2 Upgrade of the CMS Tracker

- New silicon tracker for HL-LHC
 - Higher channel density
 - Reduced material budget
 - Improved radiation tolerance
- Outer Tracker: two independent data streams (trigger and physics)

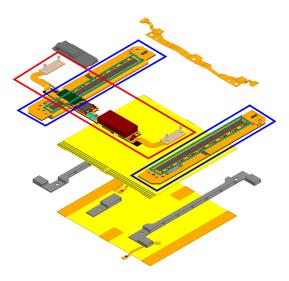

HL-LH	C and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2
4/17	09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Exp

Electrical TB2S Ladder Integration Test

The p_T Module Concept

- Contribution of Outer Tracker to L1 trigger system
- Trigger decision within 12 μs

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
5/17 09.05.2025	Lea Stockmeier: System and Integra	tion Tests with 2S Module Prototypes	Institute of Experimental Particle Physics


The 2S Module

Silicon strip sensors

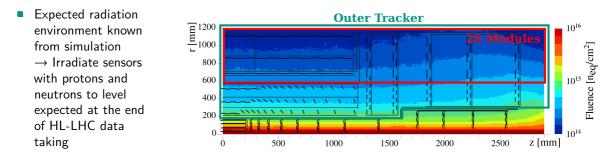
- AI-CF spacers for mechanical fixation and main cooling path
- Readout chips mounted on frontend hybrids
- Service hybrid for powering and data transmission

HL-LHC and CMS

Phase-2 Upgrade

Thermal TB2S Ladder Integration Test

Electrical TB2S Ladder Integration Test

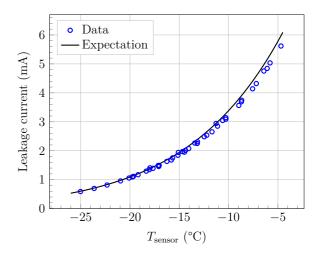

6/17 09.05.2025

Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Radiation Damage in Silicon

- Detector operation at LHC environment ⇒ Radiation damage
 - Microscopic defects in silicon lattice
- Change in sensor parameters, e.g., higher leakage current
- Annealing of crystal defects at temperatures above 0 °C

Thermal TB2S Ladder Integration Test

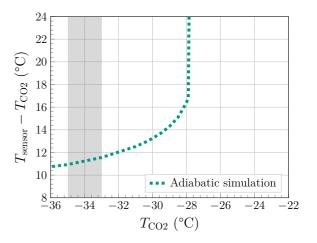

Electrical TB2S Ladder Integration Test

09.05.2025 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Cooling and Thermal Runaway

- Heat sources
 - Module electronics
 - Silicon sensors: temperature and irradiation dependent leakage current $I_{\text{leak}} \propto T^2 \cdot \exp\left(-\frac{1}{T}\right) \Delta I_{\text{leak}}(21^\circ\text{C}) = \alpha \cdot \Phi_{\text{eq}} \cdot V_{\text{sensor}}$

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
8/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

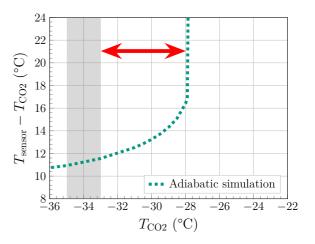

Cooling and Thermal Runaway

- Heat sources
 - Module electronics
 - Silicon sensors: temperature and irradiation dependent leakage current $I_{\text{leak}} \propto T^2 \cdot \exp\left(-\frac{1}{T}\right) \Delta I_{\text{leak}}(21^\circ\text{C}) = \alpha \cdot \Phi_{\text{eq}} \cdot V_{\text{sensor}}$

Thermal runaway

- Silicon sensors enter uncontrolled self-heating loop
- Operation of detector impossible
- Finite Volume Method (FVM) simulations to predict thermal runaway temperature

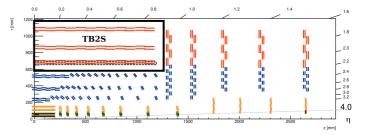
HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
8/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

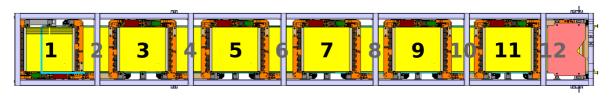

Cooling and Thermal Runaway

- Heat sources
 - Module electronics
 - Silicon sensors: temperature and irradiation dependent leakage current $I_{\text{leak}} \propto T^2 \cdot \exp\left(-\frac{1}{T}\right) \\ \Delta I_{\text{leak}}(21^\circ\text{C}) = \alpha \cdot \Phi_{\text{eq}} \cdot V_{\text{sensor}}$

Thermal runaway

- Silicon sensors enter uncontrolled self-heating loop
- Operation of detector impossible
- Finite Volume Method (FVM) simulations to predict thermal runaway temperature
- Safety margin: Difference between operation and thermal runaway temperature


 HL-LHC and CMS
 Phase-2 Upgrade
 Thermal TB2S Ladder Integration Test
 Electrical TB2S Ladder Integration Test


 8/17
 09.05.2025
 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes
 Institute of Experimental Particle Physics

The Tracker Barrel with 2S Modules (TB2S)

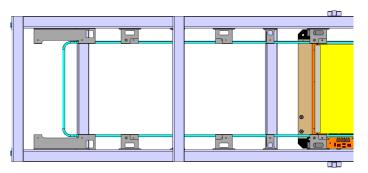
- TB2S provided by ladders equipped with twelve 2S modules each
- Two-phase CO₂ cooling to reach a sensor temperature of ≈ -20 °C

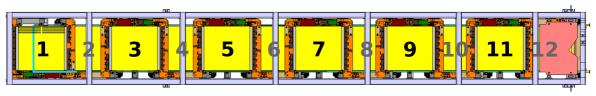
HL-LHC and CMS

9/17

Phase-2 Upgrade

Thermal TB2S Ladder Integration Test


Electrical TB2S Ladder Integration Test


09.05.2025 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

The Tracker Barrel with 2S Modules (TB2S)

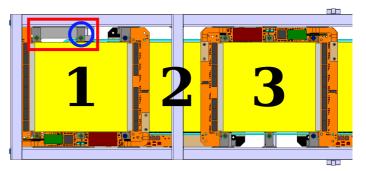
- TB2S provided by ladders equipped with twelve 2S modules each
- Two-phase CO₂ cooling to reach a sensor temperature of ≈ -20 °C
- Mounting of 2S modules on cooling inserts
 - Worst cooling contact at position 1
 - Sixth cooling point added due to special inserts

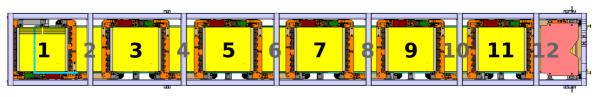
$\mathsf{HL}\text{-}\mathsf{LHC}$ and CMS

9/17

Phase-2 Upgrade

Thermal TB2S Ladder Integration Test


Electrical TB2S Ladder Integration Test


09.05.2025 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

The Tracker Barrel with 2S Modules (TB2S)

- TB2S provided by ladders equipped with twelve 2S modules each
- Two-phase CO₂ cooling to reach a sensor temperature of ≈ -20 °C
- Mounting of 2S modules on cooling inserts
 - Worst cooling contact at position 1
 - Sixth cooling point added due to special inserts

HL-LHC and CMS

9/17

Phase-2 Upgrade

Thermal TB2S Ladder Integration Test

Electrical TB2S Ladder Integration Test

09.05.2025 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Goals of My Thesis

- System tests
 - Single module measurements as a baseline for comparing with multi-module results
 - Particle detection in the laboratory with a 2S module stack
 - Characterization of final 2S module prototypes in a beam test
- Integration tests
 - First tests with modules mounted on subdetector structures
 - Test module integration with handling and tooling
 - Thermal performance studies
 - Electrical performance studies

HL-LHC and CMS

Phase-2 Upgrade

Thermal TB2S Ladder Integration Test

Electrical TB2S Ladder Integration Test

10/17 09.05.2025 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Thermal Performance – Experimental Setup

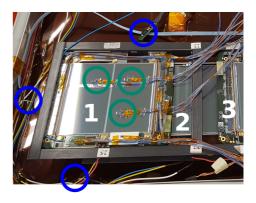
• TB2S ladder with twelve 2S modules connected to an evaporative CO₂ cooling system

HL-LHC and CMS

Phase-2 Upgrade

Thermal TB2S Ladder Integration Test

Electrical TB2S Ladder Integration Test Institute of Experimental Particle Physics

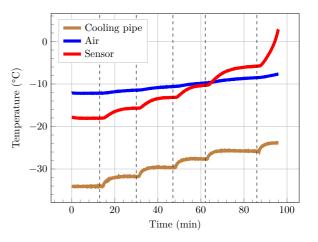

11/17 09.05.2025

Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Thermal Performance – Experimental Setup

- Study module performance at the end of HL-LHC data taking with irradiated sensors
- Position 1: Irradiated module (23 MeV protons at KIT)
 - Top sensor: $\Phi_{eq} = 1.01 \times \Phi_{eq, \text{ max}}$
 - Top sensor: $\Phi_{eq} = 1.4 \times \Phi_{eq, \max}$
- Positions 2 to 12: Unirradiated modules
- Temperature probes
 - On irradiated module
 - In air
 - On cooling pipe

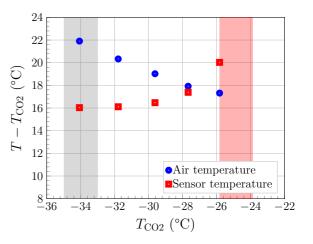
 HL-LHC and CMS
 Phase-2 Upgrade
 Thermal TB2S Ladder Integration Test


 12/17
 09.05.2025
 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Electrical TB2S Ladder Integration Test

Thermal Runaway – Measurements

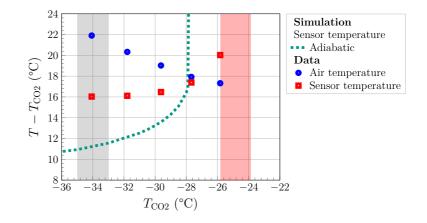
- Change CO₂ pressure (temperature) in steps
- Wait at each point until silicon sensor temperature stabilized
- \Rightarrow Exponential increase of sensor temperature during thermal runaway
 - Extract relevant data from stable points
- \Rightarrow Compare with simulation



HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
13/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

Thermal Runaway – Measurements

- Change CO₂ pressure (temperature) in steps
- Wait at each point until silicon sensor temperature stabilized
- \Rightarrow Exponential increase of sensor temperature during thermal runaway
 - Extract relevant data from stable points
- \Rightarrow Compare with simulation

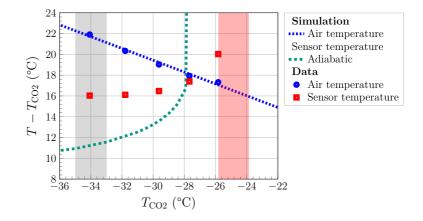


HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
13/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

Adiabatic simulation

• Without heat transfer to the surrounding air

14/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics
HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test



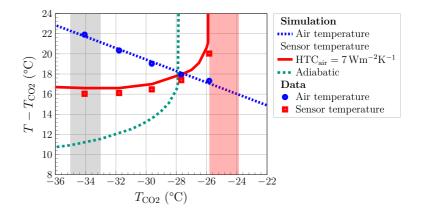
Adiabatic simulation

• Without heat transfer to the surrounding air

Convection simulation

Linear air profile as input

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
14/17 09.05.2025	Lea Stockmeier: System and Inter	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics


Adiabatic simulation

• Without heat transfer to the surrounding air

Convection simulation

- Linear air profile as input
- Tuned heat transfer coefficient (HTC_{air}) to match measurement conditions → Reasonable value for

natural air convection

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
14/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

Simulation

••••• Air temperature

Sensor temperature

Adiabatic simulation

Without heat transfer to the surrounding air

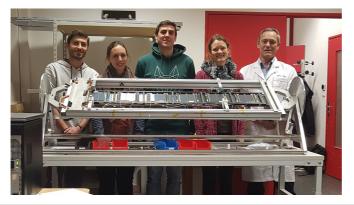
Convection simulation

- Linear air profile as input
- Tuned heat transfer coefficient (HTC_{air}) to match measurement conditions \rightarrow Reasonable value for natural air convection

20 () 0 - HTC_{air} = 7 Wm⁻²K⁻¹ Adiabatic 18 and Quantum and and $T_{\rm CO2}$ Data 16 • Air temperature ۰. Sensor temperature 1412108 4 -34-32-30 -28-26 -24 -22 $T_{\rm CO2}$ (°C)

- Thermal model validated with measurements \Rightarrow
- \rightarrow First and only thermal TB2S ladder tests with modules before production

Е


24

22

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
14/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

Electrical Performance – Experimental Setup

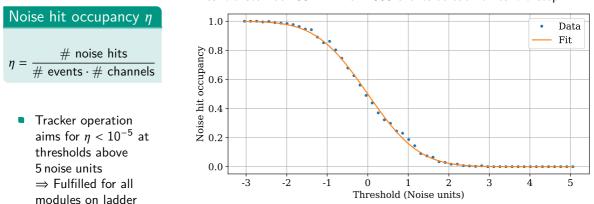
- First fully integrated TB2S ladder
- Powering with prototype power supply for the Phase-2 Outer Tracker
- Synchronous readout of twelve 2S prototype modules on the ladder

HL-LHC and CMS

09.05.2025

15/17

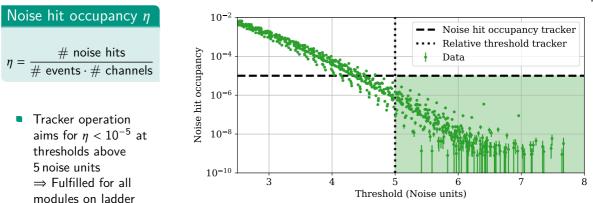
Phase-2 Upgrade


Thermal TB2S Ladder Integration Test

Lea Stockmeier: System and Integration Tests with 2S Module Prototypes

Electrical TB2S Ladder Integration Test Institute of Experimental Particle Physics

Noise Measurements


Threshold scan at 100 kHz with 1000 events at each threshold step

 \rightarrow First and only high rate readout test with modules mounted on subdetector structures

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
16/17 09.05.2025	Lea Stockmeier: System and Integ	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

Noise Measurements

Threshold scan at 597 kHz with about 100 000 events at each threshold step

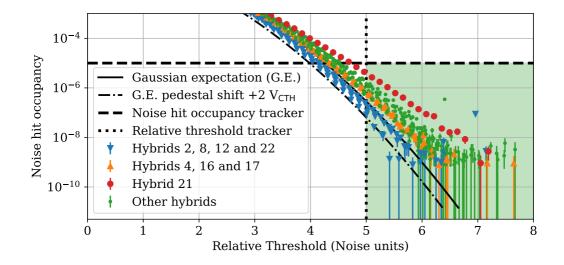
 \rightarrow First and only high rate readout test with modules mounted on subdetector structures

HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test
16/17 09.05.2025	Lea Stockmeier: System and Integr	ration Tests with 2S Module Prototypes	Institute of Experimental Particle Physics

Summary

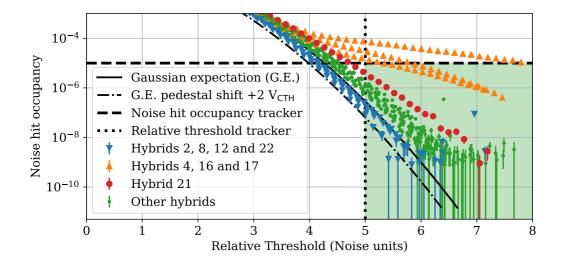
- Replacement of the CMS silicon tracker for the HL-LHC by completely new device
- First integration tests with Outer Tracker module prototypes on subdetector structures
- Validation of thermal simulations
 - Cooling performance as expected from simulation
 - Proceeding for the conference "Technology and Instrumentation in Particle Physics 2023" accepted
- Tests of electrical performance
 - Excellent performance of 2S modules on subdetector structures

17/17 09.05.2025		ation Tests with 2S Module Prototypes	Institute of Experimental Particle Physics
HL-LHC and CMS	Phase-2 Upgrade	Thermal TB2S Ladder Integration Test	Electrical TB2S Ladder Integration Test

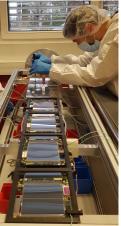


Backup

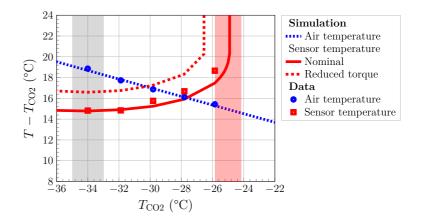
18/17 09.05.2025 Lea Stockmeier: System and Integration Tests with 2S Module Prototypes


Noise Measurements

Noise Measurements



Thermal Runaway – Torque Reduction



 Modules are screwed to ladder inserts

Thermal Runaway – Torque Reduction

- Modules are screwed to ladder inserts
- Reduced torque on all inserts
 - Effect not as pronounced as expected from simulation
- \Rightarrow Torque can be reduced to avoid thread breakage in fragile ladder inserts

