

Ánuar Sifuentes Name

uxtzj@student.kit.edu

Supervisor: Xunwu Zuo

Master's Thesis Update – April 2025

 $B_s \rightarrow \tau^+ \tau^- Physics at$

Future Z Factories

www.kit.edu

Introduction

Why Study B Meson Decays to Taus at FCC-ee?

$$\begin{array}{l} B_c^+ \to \ \tau^+ \nu_\tau \\ B^+ \to \ \tau^+ \nu_\tau \\ B_s \to \ \tau^+ \tau^- \end{array}$$

Motivation

- Anomalies in semileptonic decays:
- $R_{\rm K}$ and $R_{\rm D}$ ratios show tensions with SM
- τ channels interesting because due to strong coupling to New Physics (NP) like:
- Leptoquarks
- Two-Higgs-Doublet Models 2HDMs
- Light Higgs Boson $h \rightarrow \tau \tau$
- FCC-ee has clean environment and high luminosity

	Experimental	SM Prediction	Comments
R_K	$0.745^{+0.090}_{-0.074} \pm 0.036$	1.00 ± 0.01 [4]	$m_{\ell\ell}^2 \in [1.0, 6.0] \text{GeV}^2$, via B^{\pm} .
R_{K^*}	$0.69^{+0.12}_{-0.09}$	0.996 ± 0.002 [5]	$m_{\ell\ell}^2 \in [1.1, 6.0] \text{GeV}^2$, via B^0 .
R_D	0.340 ± 0.030	0.299 ± 0.003	B^0 and B^{\pm} combined.
R_{D^*}	0.295 ± 0.014	0.258 ± 0.005	B^0 and B^{\pm} combined.
$R_{J/\psi}$	$0.71 \pm 0.17 \pm 0.18$	0.25-0.28 [<mark>3</mark>]	

Table 1: B-meson anomaliesCredit: arXiv:2012.00665 [hep-ph]

Why focus on $B_s \rightarrow \tau^+ \tau^-$

- SM prediction: very suppressed → ideal to spot New Physics
- $B_s \rightarrow \tau^+ \tau^-$ Analysis cannot be done in LHC at the moment

\rightarrow FCC may have the first chance to observe this decay

- Main challenge: Identification of both tau particles in B_s decay
- Potential extensions:
- Lepton Flavor Violation: $B_s \rightarrow \tau^{\pm} \mu^{\mp}$, $B_s \rightarrow \tau^{\pm} e^{\mp}$
- Exotic decays: h (light Higgs) $\rightarrow \tau^+ \tau^-$

Figure 1: Schematic pictures of $B_s \rightarrow \tau^+ \tau^-$ Credit: <u>arXiv:2012.00665</u> [hep-ph]

Dealing with background events

	Properties	Decay Mode	BR
π^{\pm}	m = 1.777 GeV	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$	9.3%
7	$L = 87.0 \mu \mathrm{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}\nu$	4.6%
		$ au^{\pm} u$	5.5%
	$m = 1.069 \text{C}_{\odot} \text{V}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}$	1.1%
D_s^{\pm}	m = 1.908 GeV	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	0.6%
	$L = 151 \mu \mathrm{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}2\pi^{0}$	4.6%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}K^0_S$	0.3%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}\phi$	1.2%
	$m = 1.870 C_{o} V$	$ au^{\pm} u$	< 0.12%
D^{\pm}	m = 1.070 GeV	$\pi^{\pm}\pi^{\pm}\pi^{\mp}$	0.31%
	$L = 311 \mu \mathrm{m}$	$\pi^{\pm}\pi^{\pm}\pi^{\mp}\pi^{0}$	1.1%
		$\pi^{\pm}\pi^{\pm}\pi^{\mp}K^0_S$	3.0%

Table 2: Invariant mass and mean decay length (L)of τ^{\pm} leptons and charged D mesonsCredit: arXiv:2012.00665 [hep-ph]

- D_s^{\pm} and D^{\pm} are main backgrounds (bkg)
- They can mimic τ[±] decays, they also decay in 3 pions
- Lifetime and mean decay Length is similar
- combination of preselection:
- 1. vertex displacement
- 2. geometric angle $\Delta \Omega$
- Isolation variables
- Resonance reconstruction (ρ^o and a₁)

What Has Been Done Before Bu and Bc Decays

Analysis on $B_c^+ \to \, \tau^+ \nu_\tau \, and \, B^+ \to \, \tau^+ \nu_\tau$

Simulation and samples

- Events simulated using :
- PYTHIA8
- EvtGen
- DELPHES + IDEA detector card
- Campaign: Major Monte Carlo (MC) production efforts for the FCC-ee project.:
- Winter 2023 samples
- Spring 2021 samples
- Samples include
- Inclusive: $Z \rightarrow$ bb, cc, qq; incluisive decay of every particle
- Exclusive: Specific B meson decay chains

Event selection strategy

Figure 2: Representation of thrust axis (not our decay) **Credit: Rivière et al. (2024)** – *Prospects for searches* of $b \rightarrow s v v^{-}$ at FCC-ee <u>ResearchGate link</u> The two b-quarks can be split into two hemispheres

→ Thrust axis

Signal decays involve missing energy from neutrinos

→ Energy imbalance

- Bkg have more balanced energy distributions
- Preselection removes obvious background

Tau reconstruction

- Events must have a candidate tau vertex:
- Candidate is chosen as the 3π vertex with the smallest vertex fit χ² in the signal hemisphere.
- have an invariant mass below that of the τ lepton
- have at least one m(π+π-) combination within the range 0.6–1.0 GeV
- Look for **3 pion system**
- Reconstruct the mass and number of 3 pion candidates in the event
- Reconstruct invariant mass of intermediate resonances
- a_1^{\pm} and ρ_0 mesons in the τ decay chain.

 $\tau^+ \longrightarrow \pi^+ \pi^+ \pi^- \nu_{ au}$

Boosted Decision Trees

- XGBoost-based BDTs to separate signal from background.
- **BDT1**: General Background Rejection, uses event-level features:
- Energy balance; Number of tracks; Vertex properties
- Achieved excellent separation in Bu/Bc analyses:
- ROC Area = 0.983
- BDT2: Signal Type classification
- Distinguishes B_c^+ , B^+ and background
- Uses more refinded methods:
- **3π system**: mass, thrust angle, multiplicity
- Vertex info: impact parameter, PV mass
- D meson tagging
- Performance
- AUC (Bc vs non-Bc): 0.921
- AUC (Bu vs non-Bu): 0.886

Figure 3:Distribution of second stage BDT output in Bu-Bc plane **Credit:** https://arxiv.org/abs/2305.02998

Plans for $B_s \rightarrow \tau^+ \tau^-$

Analysis Strategy for **B**_s decays

Institut für Experimentelle Teilchenphysik (ETP)

Analysis strategy

- Two reconstruction methods being studied:
- Single jet/cone: Does the jet structure look like 2 overlapping taus?
- Vertex based-method: Similar to Bu/Bc, but for 2 displaced vertices
- Will train MVAs for:
- $B_s \rightarrow \tau^+ \tau^- vs$ inclusive $Z \rightarrow bb$
- Using isolation, geometry, energy imbalance, and tau reconstruction

Figure 4: Schematic representation of a di-ττ object **Credit**: arXiv:2007.14811CERN-EP-2020-118

Goal and Plan for the study

- Evaluate the potential of FCC-ee to observe rare tau-related B meson decays, in this case $B_s \rightarrow \tau^+ \tau^-$. (potentially also for $B^0 \rightarrow \tau^+ \tau^-$)
- Constrain or reveal New Physics
- General plan:
- Understand the physics and relevant decay channels
- Learn about FCC-ee event structure and background sources
- Use machine learning (BDTs) to separate signal from background
- Evaluate how well FCC-ee could measure or constrain these decays

Progress and next steps

Karlsruhe Institute of Technology

What I've done so far:

- Studied the relevant decays: B^+ and $B_c^+ \rightarrow \tau^+ \nu_{\tau}$ (for methodology), and $B_s \rightarrow \tau^+ \tau^-$
- Learned about background processes and their suppression strategies
- Understood the role of BDTs in separating signals and backgrounds

What comes next:

- Set up analysis framework and load FCC-ee bkg samples
- Set up the 2 reconstruction approaches and compare results
- Train and evaluate BDTs for signal-background separation
- Repare plots and organize results for internal discussion

Thank you

Questions or feedback are welcome!

Institut für Experimentelle Teilchenphysik (ETP)

Efficiency and Optimization

- In B_c^+ and B^+ studies optimization is done
 - by maximizing: **Purity = S / (S + B)**
- Efficiency is estimated from exclusive simulated decays.
- BDT1 and BDT2 cuts are tuned separately.
- Final cuts chosen to balance signal efficiency and background suppression.
- A 3D efficiency function is evaluated over BDT cut values to find the optimal region